当前位置: 首页 > news >正文

河北网站建设联系电话关键词上首页软件

河北网站建设联系电话,关键词上首页软件,还有多少用.net做网站的,优秀产品设计作品灰色神经网络(Grey Neural Network, GNN) 是将灰色系统理论与人工神经网络相结合的一种模型,旨在处理不完全信息和小样本问题。灰色神经网络利用灰色系统的预测优势和神经网络的学习能力,能够在信息不完整或数据不充分的情况下实现…

灰色神经网络(Grey Neural Network, GNN) 是将灰色系统理论与人工神经网络相结合的一种模型,旨在处理不完全信息和小样本问题。灰色神经网络利用灰色系统的预测优势和神经网络的学习能力,能够在信息不完整或数据不充分的情况下实现较高的预测精度。它广泛应用于工程优化、经济预测和系统建模等领域。


灰色系统理论简介

灰色系统理论是一种专注于不完全信息处理的方法,通过对不完全、不确定性数据进行灰化处理,挖掘数据中的潜在规律。其核心是基于有限的数据建立灰色模型(如 GM(1,1)),通过数据生成和动态建模实现预测。


灰色神经网络的基本原理

灰色神经网络结合了灰色系统理论的建模能力和神经网络的非线性映射能力,主要包括以下几个步骤:

  1. 数据预处理

    • 将原始数据进行灰色生成(如累加生成),使数据序列平滑化,从而增强趋势的识别。
    • 数据归一化处理,将输入数据映射到特定范围(如 [0, 1]),以提高训练效果。
  2. 灰色特征提取

    • 使用灰色模型(如 GM(1,1))提取数据中的趋势特征。
    • 通过分析原始数据的灰色关联度,提取关键的输入变量。
  3. 神经网络建模

    • 将提取的灰色特征作为神经网络的输入。
    • 神经网络通过学习输入与输出之间的映射关系,预测目标值。网络结构通常采用前馈网络,如 BP 神经网络。
  4. 参数优化

    • 采用优化算法(如梯度下降、遗传算法或粒子群优化)调整网络权重,提高模型的预测能力。
    • 灰色神经网络的训练过程同时结合了灰色建模和神经网络优化。

灰色神经网络的结构

灰色神经网络的结构通常包括以下部分:

  1. 输入层
    接收经过灰色处理的特征变量。

  2. 隐含层
    通过神经元对输入特征进行非线性映射,识别复杂的模式和关系。

  3. 输出层
    生成预测结果或分类结果。


灰色神经网络的特点

  1. 小样本建模能力
    适用于样本量较少、数据不完全的情况,能够在信息不足的条件下进行建模和预测。

  2. 兼顾线性和非线性特征
    灰色系统理论提取数据的整体趋势特征,神经网络进一步学习非线性关系,模型具有较强的泛化能力。

  3. 抗噪能力强
    由于灰色生成过程具有数据平滑效果,灰色神经网络对噪声数据具有较好的鲁棒性。

  4. 灵活性高
    灰色神经网络可根据实际需求调整灰色建模和神经网络的结构或参数,从而适应不同应用场景。


应用领域

  1. 经济预测
    在经济数据不充分的情况下,用于预测市场趋势、商品价格等。

  2. 工程优化
    应用于优化复杂工程系统的参数,如电力负荷预测、交通流量预测等。

  3. 医学分析
    预测疾病发展趋势或分析生物医学数据。

  4. 能源管理
    用于预测能源消耗和优化能源分配方案。


总结

灰色神经网络通过融合灰色系统的趋势建模能力和神经网络的非线性映射能力,在小样本、不完全数据情况下提供了强大的预测能力。它兼具理论严谨性和实用性,是一种适合多种复杂场景的混合模型方法。


%% 清空环境变量
clc
clearload data%% 数据累加作为网络输入
[n,m]=size(X);
for i=1:ny(i,1)=sum(X(1:i,1));y(i,2)=sum(X(1:i,2));y(i,3)=sum(X(1:i,3));y(i,4)=sum(X(1:i,4));y(i,5)=sum(X(1:i,5));y(i,6)=sum(X(1:i,6));
end%% 网络参数初始化
a=0.3+rand(1)/4;
b1=0.3+rand(1)/4;
b2=0.3+rand(1)/4;
b3=0.3+rand(1)/4;
b4=0.3+rand(1)/4;
b5=0.3+rand(1)/4;%% 学习速率初始化
u1=0.0015;
u2=0.0015;
u3=0.0015;
u4=0.0015;
u5=0.0015;%% 权值阀值初始化
t=1;
w11=a;
w21=-y(1,1);
w22=2*b1/a;
w23=2*b2/a;
w24=2*b3/a;
w25=2*b4/a;
w26=2*b5/a;
w31=1+exp(-a*t);
w32=1+exp(-a*t);
w33=1+exp(-a*t);
w34=1+exp(-a*t);
w35=1+exp(-a*t);
w36=1+exp(-a*t);
theta=(1+exp(-a*t))*(b1*y(1,2)/a+b2*y(1,3)/a+b3*y(1,4)/a+b4*y(1,5)/a+b5*y(1,6)/a-y(1,1));kk=1;%% 循环迭代
for j=1:10
%循环迭代
E(j)=0;
for i=1:30%% 网络输出计算t=i;LB_b=1/(1+exp(-w11*t));   %LB层输出LC_c1=LB_b*w21;           %LC层输出LC_c2=y(i,2)*LB_b*w22;    %LC层输出LC_c3=y(i,3)*LB_b*w23;    %LC层输出LC_c4=y(i,4)*LB_b*w24;    %LC层输出LC_c5=y(i,5)*LB_b*w25;    %LC层输出LC_c6=y(i,6)*LB_b*w26;    %LC层输出 LD_d=w31*LC_c1+w32*LC_c2+w33*LC_c3+w34*LC_c4+w35*LC_c5+w36*LC_c6;    %LD层输出theta=(1+exp(-w11*t))*(w22*y(i,2)/2+w23*y(i,3)/2+w24*y(i,4)/2+w25*y(i,5)/2+w26*y(i,6)/2-y(1,1));   %阀值ym=LD_d-theta;   %网络输出值yc(i)=ym;%% 权值修正error=ym-y(i,1);      %计算误差E(j)=E(j)+abs(error);    %误差求和       error1=error*(1+exp(-w11*t));     %计算误差error2=error*(1+exp(-w11*t));     %计算误差error3=error*(1+exp(-w11*t));error4=error*(1+exp(-w11*t));error5=error*(1+exp(-w11*t));error6=error*(1+exp(-w11*t));error7=(1/(1+exp(-w11*t)))*(1-1/(1+exp(-w11*t)))*(w21*error1+w22*error2+w23*error3+w24*error4+w25*error5+w26*error6);%修改权值w22=w22-u1*error2*LB_b;w23=w23-u2*error3*LB_b;w24=w24-u3*error4*LB_b;w25=w25-u4*error5*LB_b;w26=w26-u5*error6*LB_b;w11=w11+a*t*error7;
end
end  %画误差随进化次数变化趋势
figure(1)
plot(E)
title('训练误差','fontsize',12);
xlabel('进化次数','fontsize',12);
ylabel('误差','fontsize',12);
%print -dtiff -r600 28-3%根据训出的灰色神经网络进行预测
for i=31:36t=i;LB_b=1/(1+exp(-w11*t));   %LB层输出LC_c1=LB_b*w21;           %LC层输出LC_c2=y(i,2)*LB_b*w22;    %LC层输出LC_c3=y(i,3)*LB_b*w23;    %LC层输出LC_c4=y(i,4)*LB_b*w24;    %LC层输出LC_c5=y(i,5)*LB_b*w25;LC_c6=y(i,6)*LB_b*w26;LD_d=w31*LC_c1+w32*LC_c2+w33*LC_c3+w34*LC_c4+w35*LC_c5+w36*LC_c6;    %LD层输出theta=(1+exp(-w11*t))*(w22*y(i,2)/2+w23*y(i,3)/2+w24*y(i,4)/2+w25*y(i,5)/2+w26*y(i,6)/2-y(1,1));   %阀值ym=LD_d-theta;   %网络输出值yc(i)=ym;
end
yc=yc*100000;
y(:,1)=y(:,1)*10000;%计算预测的每月需求量
for j=36:-1:2ys(j)=(yc(j)-yc(j-1))/10;
endfigure(2)
plot(ys(31:36),'-*');
hold on
plot(X(31:36,1)*10000,'r:o');
legend('灰色神经网络','实际订单数')
title('灰色系统预测','fontsize',12)
xlabel('月份','fontsize',12)
ylabel('销量','fontsize',12)

http://www.wangmingla.cn/news/157178.html

相关文章:

  • 衢州网站制作汕头seo优化培训
  • 亚马逊网站建设seo技术好的培训机构
  • 网站被k十大原因网店代运营合同
  • asp网站安装教程百度手机助手官方正版
  • 做天猫网站价格如何写推广软文
  • 一家专门做特卖的网站手机版成都seo推广员
  • 广西建设厅办事大厅网站网络优化大师下载
  • 免费b站推广网站入口2023孩子出牙会发烧吗现在做网络推广都有什么方式
  • 取名网站怎么做百度2022最新版本
  • 网站服务器转移视频吗360优化大师官方下载
  • 做房产中介网站搜狗网页版
  • wordpress网站新闻贵阳网络推广外包
  • 青岛网站建站团队推广网站有效的免费方法
  • 河南大学学科建设处网站百度搜索网址
  • 做交友网站挣钱吗站长工具pr值查询
  • 真人做a视频网站推广资源网
  • 做蛋糕哪个教程网站好百度网站分析
  • 医院网站建设方案网络营销的手段有哪些
  • 中国交通建设集团第四工程局网站下载手机百度最新版
  • iis网站伪静态网站aso优化方法
  • 廊坊哪些公司做网站江西百度推广公司
  • 做网站多少seo优化名词解释
  • 网站建设业务越做越累软文素材
  • 烟台商城网站建设国家中医药管理局
  • 深圳做棋牌网站建设哪家好营销推广是什么意思
  • 亚洲成品1688进入优化大师apk
  • 企业邮箱注册申请入口南宁网站seo外包
  • 怎么查询网站开通时间免费二级域名生成网站
  • 怎么查看网站的建设时间免费b站在线观看人数在哪
  • seo 排名seo排名优化软件有