当前位置: 首页 > news >正文

做网站用的浏览器有哪些手机百度引擎搜索入口

做网站用的浏览器有哪些,手机百度引擎搜索入口,阿里云服务器网站备案,外文网站制作K近邻分类器(KNN)(4-2) K近邻分类器(K-Nearest Neighbor,简称KNN)是一种基本的机器学习分类算法。它的工作原理是:在特征空间中,如果一个样本在特征空间中的K个最相邻的样…

K近邻分类器(KNN)(4-2)

K近邻分类器(K-Nearest Neighbor,简称KNN)是一种基本的机器学习分类算法。它的工作原理是:在特征空间中,如果一个样本在特征空间中的K个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别。

具体来说,KNN算法首先计算待分类样本与其他所有样本的距离,然后按照距离的递增关系进行排序,选取距离最小的K个样本,最后根据这K个样本的类别通过多数投票等方式进行预测。当K=1时,KNN算法又称为最近邻算法。

KNN算法的优点包括:

  1. 思想简单,易于理解和实现。
  2. 对数据分布没有假设,完全基于距离度量进行分类。
  3. 适用范围广,可以用于多分类问题。

然而,KNN算法也存在一些缺点:

  1. 对距离度量函数和K值的选择敏感,不同的距离度量函数和K值可能会产生不同的分类结果。
  2. 计算量大,需要计算待分类样本与所有训练样本的距离。
  3. 内存需求大,需要存储所有的训练样本。
  4. 可解释性不强,无法给出决策边界等直观的解释。

KNN算法的应用场景非常广泛,包括但不限于:

  1. 垃圾邮件识别:可以将邮件分为“垃圾邮件”或“正常邮件”两类。
  2. 图像内容识别:由于图像的内容种类可能很多,因此这是一个多类分类问题。
  3. 文本情感分析:既可以作为二分类问题(褒贬两种情感),也可以作为多类分类问题(如十分消极、消极、积极、十分积极等)。

此外,KNN算法还可以用于其他机器学习任务,如手写数字识别、鸢尾花分类等。在这些任务中,KNN算法都表现出了较好的性能。

  1. 数据实例
IDAgeExperienceIncomeZIP CodeFamilyCCAvgEducationMortgagePersonal LoanSecurities AccountCD AccountOnlineCreditCard
1251499110741.61001000
24519349008931.51001000
339151194720111000000
43591009411212.72000000
53584591330412000001
63713299212140.4215500010
75327729171121.52000010
85024229394310.33000001
93510819008930.6210400010
103491809302318.93010000
1165391059471042.43000000
12295459027730.12000010
1348231149310623.83001000
145932409492042.52000010
15674111291741121001000
166030229505411.53000011
1738141309501044.7313410000
184218819430542.41000000
1946211939160428.13010000
205528219472010.52001001
215631259401540.9211100010
2257276390095323000010
23295629027711.2126000010
244418439132020.7116301000
2536111529552123.9115900001
264319299430530.519700010
274016839506440.23000000
2846201589006412.41000011
295630489453912.23000011
3038131199410413.32010111
315935359310611.2312200010
3240162994117122000010
335328419480120.6319300000
34306189133030.93000000
35315509403541.83000010
364824819264730.71000000
3759351219472012.91000001
385125719581411.4319800000
39421814194114353011110
403813809411540.7328500010
415732849267231.63001000
42349609412232.31000000
433271329001941.1241210010
443915459561610.71000010
4546201049406515.71000011
465731529472042.51000001
473914439501430.7215300010
4837121949138040.2321111111
495626819574724.53000001
504016499237311.81000001
5132889209340.72001010
5261371319472012.91000010
53306729400510.1120700000
5450261909024532.1324010010
55295449581910.23000010
56411713994022281000010
575530299400530.12001110
5856311319561621.23010000
59282939406520.21000000
603151889132024.5145500000
614924399040431.72001010
6247211259340715.7111201000
6342182290089111000000
6442173294523402000010
6547231059002423.31000000
6659351319136013.81000011
6762361059567022.8133600000
685323459512342313201000
694721609340732.11000011
705329209004540.21000010
7142181159133513.51000001
7253296993907412000010
73442013092007151000001
7441168594606143000011
752831359461123.31000001
763171359490143.82010111

使用第1题中的Universal Bank数据集。

注意:数据集中的编号(ID)和邮政编码(ZIP CODE)特征因为在分类模型中无意义,所以在数据预处理阶段将它们删除。

  1. 使用KNN对数据进行分类
  1. 使用留出法划分数据集,训练集:测试集为7:3。
# 使用留出法划分数据集,训练集:测试集为7:3
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
  1. 使用KNN对训练集进行训练
# 使用KNN算法对训练集进行训练,最近邻的数量K设置为5
model = KNeighborsClassifier(n_neighbors=5)
model.fit(X_train, y_train)

最近邻的数量K设置为5。

  1. 使用训练好的模型对测试集进行预测并输出预测结果模型准确度
# 使用训练好的模型对测试集进行预测
y_pred = model.predict(X_test)# 输出预测结果
for item in y_pred:print(item, end='\n')  # 每项后面都换行,这样就不会合并在一起
print("预测结果:")
print(y_pred)# 输出模型准确度
accuracy = accuracy_score(y_test, y_pred)
print("模型准确度:", accuracy)

 完整代码:

# 导入所需的库
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
import pprint# 禁用输出省略
pd.set_option('display.max_rows', None)
pd.set_option('display.max_columns', None)
pd.set_option('display.width', None)
pd.set_option('display.max_colwidth', None)# 读取数据集
data = pd.read_csv("universalbank.csv")# 数据预处理:删除无意义特征
data = data.drop(columns=['ID', 'ZIP Code'])# 划分特征和标签
X = data.drop(columns=['Personal Loan'])
y = data['Personal Loan']# 使用留出法划分数据集,训练集:测试集为7:3
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 使用KNN算法对训练集进行训练,最近邻的数量K设置为5
model = KNeighborsClassifier(n_neighbors=5)
model.fit(X_train, y_train)# 使用训练好的模型对测试集进行预测
y_pred = model.predict(X_test)# 输出预测结果
for item in y_pred:print(item, end='\n')  # 每项后面都换行,这样就不会合并在一起
print("预测结果:")
print(y_pred)# 输出模型准确度
accuracy = accuracy_score(y_test, y_pred)
print("模型准确度:", accuracy)

 

http://www.wangmingla.cn/news/71318.html

相关文章:

  • wordpress主题博客主题seo中介平台
  • 教你做企业网站搜索引擎优化 简历
  • 火影忍者做网站的图片网络营销策划书的主要内容
  • 一个营销型网站模板百度营业执照怎么办理
  • vue门户网站模板阿里指数官网最新版本
  • 2017做电商做什么网站seo网站优化论文
  • 大型门户网站开发关键词排名顾问
  • 建设公司网站新闻素材管理长春网站制作计划
  • 顺德网站制作案例市场成都网站建设方案托管
  • 网站优化文章网站制作策划
  • 美国外贸网站谁能给我个网址
  • 后端开发和前端开发的区别百度seo优化策略
  • 如何建立互联网公司网站seopc流量排行榜企业
  • 广州营销咨询公司云南seo简单整站优化
  • 南宁网站建设网站推广温州高端网站建设
  • 深圳动画营销推广的原因seo营销网站
  • 虚拟机做网站百度信息流广告
  • 网站设计会存在什么问题温州百度推广公司电话
  • 高性能网站建设进阶指南:web开发者性能优化最佳实践域名申请哪家好
  • wordpress 顺序河北网站seo地址
  • 丝袜用什么做的视频网站西安百度推广代理商
  • 商融交通建设工程有限公司网站总推荐榜总点击榜总排行榜
  • 怎么样制作微信小程序关键词seo优化
  • 阿里云控制台登录入口深圳网站关键词排名优化
  • 开发公司土地评估费计入土地价款广州百度搜索排名优化
  • 网站的建设方面google代理
  • 茂名专业网站建设公司最近10个新闻
  • php网站服务器百度关键词排名突然消失了
  • 淄博做网站公司正规专业短期培训学校
  • 崇明做网站公司生意参谋指数在线转换