当前位置: 首页 > news >正文

美国社交网站 做仿牌怎样做一个自己的网站

美国社交网站 做仿牌,怎样做一个自己的网站,网站做不做备案有什么区别,封面型网站首页怎么做文章目录 资料环境尝试训练安全帽数据训练测试预测全部数据、代码、训练完的权重等资料见: 资料 依据这个进行训练: https://github.com/WZMIAOMIAO/deep-learning-for-image-processing/tree/master/pytorch_object_detection/faster_rcnn ├── bac…

文章目录

  • 资料
  • 环境
  • 尝试训练
  • 安全帽数据训练
  • 测试
  • 预测
  • 全部数据、代码、训练完的权重等资料见:

资料

依据这个进行训练:
https://github.com/WZMIAOMIAO/deep-learning-for-image-processing/tree/master/pytorch_object_detection/faster_rcnn

├── backbone: 特征提取网络,可以根据自己的要求选择
├── network_files: Faster R-CNN网络(包括Fast R-CNN以及RPN等模块)
├── train_utils: 训练验证相关模块(包括cocotools)
├── my_dataset.py: 自定义dataset用于读取VOC数据集
├── train_mobilenet.py: 以MobileNetV2做为backbone进行训练
├── train_resnet50_fpn.py: 以resnet50+FPN做为backbone进行训练
├── train_multi_GPU.py: 针对使用多GPU的用户使用
├── predict.py: 简易的预测脚本,使用训练好的权重进行预测测试
├── validation.py: 利用训练好的权重验证/测试数据的COCO指标,并生成record_mAP.txt文件
└── pascal_voc_classes.json: pascal_voc标签文件

在这里插入图片描述

环境

dockerfile:

FROM nvidia/cuda:11.8.0-cudnn8-devel-ubuntu22.04
ENV DEBIAN_FRONTEND=noninteractive# 安装基本软件包
RUN apt-get update && \apt-get upgrade -y && \apt-get -y --no-install-recommends install vim wget curl build-essential python3.10-dev python3.10 python3-pip sudo && \update-alternatives --install /usr/bin/python python /usr/bin/python3.10 1 && \apt-get install -y libgl1 libglib2.0-0 ffmpeg tzdata && \ln -sf /usr/share/zoneinfo/Asia/Shanghai /etc/localtime && \echo "Asia/Shanghai" > /etc/timezoneRUN apt-get -y --no-install-recommends install vim wget curl git build-essential python3.10 python3-pip python3.10-venv sudoRUN apt-get install -y libgl1 libglib2.0-0 iputils-ping python3.10-dev libgoogle-perftools-dev nginx# 更改默认Shell为bash
SHELL ["/bin/bash", "-c"]

python 环境:

git clone https://github.com/WZMIAOMIAO/deep-learning-for-image-processing.git
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh
conda create -n py38 python=3.8 -y
conda activate py38
# CUDA 11.0
conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=11.0 -c pytorch -y
cd /deep-learning-for-image-processing/pytorch_object_detection/faster_rcnn
pip install -r requirements.txt

得到readme.md说的一些权重:

cd /deep-learning-for-image-processing/pytorch_object_detection/faster_rcnn/backbonewget https://download.pytorch.org/models/mobilenet_v2-b0353104.pth
--2024-06-05 13:50:21--  https://download.pytorch.org/models/mobilenet_v2-b0353104.pthmv mobilenet_v2-b0353104.pth mobilenet_v2.pthwget https://download.pytorch.org/models/resnet50-0676ba61.pth
--2024-06-05 13:50:46--  https://download.pytorch.org/models/resnet50-0676ba61.pthmv resnet50-0676ba61.pth resnet50.pthwget https://download.pytorch.org/models/fasterrcnn_resnet50_fpn_coco-258fb6c6.pthmv fasterrcnn_resnet50_fpn_coco-258fb6c6.pth fasterrcnn_resnet50_fpn_coco.pthmkdir /deep-learning-for-image-processing/pytorch_object_detection/faster_rcnn/data
cd /deep-learning-for-image-processing/pytorch_object_detection/faster_rcnn/datawget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar

尝试训练

反向commit 镜像:

docker commit 74d9893ccb29 kevinchina/deeplearning:fasterrcnn_train_v1docker push kevinchina/deeplearning:fasterrcnn_train_v1

重启容器:

docker run --gpus all -it -v $PWD:/wkp --shm-size=64g kevinchina/deeplearning:fasterrcnn_train_v1 bash

训练:

conda activate py38
cd /deep-learning-for-image-processing/pytorch_object_detection/faster_rcnn/
python train_mobilenetv2.py

启动成功:
在这里插入图片描述
一轮训练完成后的验证:
在这里插入图片描述

安全帽数据训练

安全帽佩戴检测
数据集:https://github.com/njvisionpower/Safety-Helmet-Wearing-Dataset

加入安全帽数据,小小修改一下源代码的一些小的东西:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

启动训练:

python train_mobilenetv2.py

训练完一轮:
在这里插入图片描述
训练结束:

Test:  Total time: 0:00:52 (0.0858 s / it)
Averaged stats: model_time: 0.0590 (0.0440)  evaluator_time: 0.2436 (0.0344)
Accumulating evaluation results...
DONE (t=1.42s).
IoU metric: bboxAverage Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.412Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.695Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.425Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.171Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.540Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.669Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.169Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.395Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.466Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.262Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.602Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.714
successful save loss curve!
successful save mAP curve!

测试

用test.txt中测试准确率

python validation.py

在这里插入图片描述

预测

(py38) root:/deep-learning-for-image-processing/pytorch_object_detection/faster_rcnn# python  predict.py
using cuda:0 device.
inference+NMS time: 0.018668174743652344

docker push kevinchina/deeplearning:fasterrcnn_train_v2

全部数据、代码、训练完的权重等资料见:

https://docs.qq.com/sheet/DUEdqZ2lmbmR6UVdU?tab=BB08J2
http://www.wangmingla.cn/news/116359.html

相关文章:

  • aliyun怎么建网站济南网站建设公司选济南网络
  • 东莞中高端网站建设企业推广宣传文案
  • 上海高端网站开发公太原seo计费管理
  • 外贸网站seo网站建设多少钱
  • 照片做视频模板下载网站软件测试培训班多少钱
  • 纯静态企业网站模板免费下载加快百度收录的方法
  • 企业网站模板下载psd格式网络策划方案
  • 免费网站推广网址德州百度推广公司
  • 建设网站如何挂到网上网站收录是什么意思
  • wordpress project搜索引擎优化策略包括
  • 企业网站建设需要提供什么材料百度直播推广
  • 江苏网站建设案例全球最受欢迎的网站排名
  • 龙岩一中网站百度指数数据下载
  • 合肥哪家做网站不错自媒体营销的策略和方法
  • 做效果图兼职的网站大众点评seo关键词优化
  • 梅州站改造高铁站windows优化大师好不好
  • 一个服务器做一样的网站吗最新搜索引擎排名
  • 芜湖做网站哪家好seo点击器
  • 做网页前端接活网站seo快速优化排名
  • 图文网站源码重庆百度竞价开户
  • idc销售网站php源码百度地图关键词排名优化
  • 手机微信客户端网站建设新闻发稿推广
  • 在哪个网站做网上兼职靠谱吗seo优化教程培训
  • 网站如何做m适配浏览器老是出现站长工具
  • 网站开发的开发工具seo百度百科
  • 做网站弄关键词多少钱新华传媒b2b商务平台
  • ftp怎么连接网站微博营销策略
  • 武威百度做网站多少钱seo自学教程seo免费教程
  • 宏升温岭网站建设中文域名注册官网入口
  • 做动图的网站站长工具高清吗