当前位置: 首页 > news >正文

建设部网站 自住房discuz论坛seo设置

建设部网站 自住房,discuz论坛seo设置,天津网站制作公司哪家好,主机托管名词解释文章目录最小二乘法返回值测试最小二乘法 scipy.sparse.linalg实现了两种稀疏矩阵最小二乘法lsqr和lsmr,前者是经典算法,后者来自斯坦福优化实验室,据称可以比lsqr更快收敛。 这两个函数可以求解AxbAxbAxb,或arg min⁡x∥Ax−b…

文章目录

    • 最小二乘法
    • 返回值
    • 测试

最小二乘法

scipy.sparse.linalg实现了两种稀疏矩阵最小二乘法lsqrlsmr,前者是经典算法,后者来自斯坦福优化实验室,据称可以比lsqr更快收敛。

这两个函数可以求解Ax=bAx=bAx=b,或arg min⁡x∥Ax−b∥2\argmin_x\Vert Ax-b\Vert^2argminxAxb2,或arg min⁡x∥Ax−b∥2+d2∥x−x0∥2\argmin_x\Vert Ax-b\Vert^2+d^2\Vert x-x_0\Vert^2argminxAxb2+d2xx02,其中AAA必须是方阵或三角阵,可以有任意秩。

通过设置容忍度at,bta_t, b_tat,bt,可以控制算法精度,记r=b−Axr=b-Axr=bAx为残差向量,如果Ax=bAx=bAx=b是相容的,lsqr在∥r∥⩽at∗∥A∥⋅∥x∥+bt∥b∥\Vert r\Vert\leqslant a_t*\Vert A\Vert\cdot\Vert x\Vert + b_t\Vert b\VertratAx+btb时终止;否则将在∥ATr∥⩽at∥A∥⋅∥r∥\Vert A^T r\Vert\leqslant a_t\Vert A\Vert \cdot\Vert r\VertATratAr
如果两个容忍度都是10−610^{-6}106,最终的∥r∥\Vert r\Vertr将有6位精度。

lsmr的参数如下

lsmr(A, b, damp=0.0, atol=1e-06, btol=1e-06, conlim=100000000.0, maxiter=None, show=False, x0=None)

参数解释:

  • A 可谓稀疏矩阵、数组以及线性算子
  • b 为数组
  • damp 阻尼系数,默认为0
  • atol, btol 截止容忍度,是lsqr迭代的停止条件,即at,bta_t, b_tat,bt
  • conlim 另一个截止条件,对于最小二乘问题,conlim应该小于10810^8108,如果Ax=bAx=bAx=b是相容的,则conlim最大可以设到101210^{12}1012
  • iter_limint 迭代次数
  • show 如果为True,则打印运算过程
  • calc_var 是否估计(A.T@A + damp**2*I)^{-1}的对角线
  • x0 阻尼系数相关

lsqrlsmr相比,没有maxiter参数,但多了iter_lim, calc_va参数。

上述参数中,damp为阻尼系数,当其不为0时,记作δ\deltaδ,待解决的最小二乘问题变为

[AδI]x=[bδx0]\begin{bmatrix}A\\\delta I\end{bmatrix} x=\begin{bmatrix}b\\\delta x_0 \end{bmatrix} [AδI]x=[bδx0]

返回值

lsmr的返回值依次为:

  • xAx=bAx=bAx=b中的xxx
  • istop 程序结束运行的原因
  • itn 迭代次数
  • normr ∥b−Ax∥\Vert b-Ax\VertbAx
  • normar ∥AT(b−Ax)∥\Vert A^T(b-Ax)\VertAT(bAx)
  • norma ∥A∥\Vert A\VertA
  • conda A的条件数
  • normx ∥x∥\Vert x\Vertx

lsqr的返回值为

  • xAx=bAx=bAx=b中的xxx
  • istop 程序结束运行的原因
  • itn 迭代次数
  • r1norm ∥b−Ax∥\Vert b-Ax\VertbAx
  • r2norm ∥b−Ax∥2+δ2∥x−x0∥2\sqrt{\Vert b-Ax\Vert^2+\delta^2\Vert x-x_0\Vert^2}bAx2+δ2xx02
  • anorm 估计的Frobenius范数Aˉ\bar AAˉ
  • acond Aˉ\bar AAˉ的条件数
  • arnorm ∥ATr−δ2(x−x0)∥\Vert A^Tr-\delta^2(x-x_0)\VertATrδ2(xx0)
  • xnorm ∥x∥\Vert x\Vertx
  • var (ATA)−1(A^TA)^{-1}(ATA)1

二者的返回值较多,而且除了前四个之外,剩下的意义不同,调用时且须注意。

测试

下面对这两种算法进行验证,第一步就得先有一个稀疏矩阵

import numpy as np
from scipy.sparse import csr_arraynp.random.seed(42)  # 设置随机数状态
mat = np.random.rand(500,500)
mat[mat<0.9] = 0
csr = csr_array(mat)

然后用这个稀疏矩阵乘以一个xxx,得到bbb

xs = np.arange(500)
b = mat @ xs

接下来对这两个最小二乘函数进行测试

from scipy.sparse.linalg import lsmr, lsqr
import matplotlib.pyplot as plt
mx = lsmr(csr, b)[0]
qx = lsqr(csr, b)[0]
plt.plot(xs, lw=0.5)
plt.plot(mx, lw=0, marker='*', label="lsmr")
plt.plot(qx, lw=0, marker='.', label="lsqr")
plt.legend()
plt.show()

为了对比清晰,对图像进行放大,可以说二者不分胜负

在这里插入图片描述

接下来比较二者的效率,500×500500\times500500×500这个尺寸显然已经不合适了,用2000×20002000\times20002000×2000

from timeit import timeitnp.random.seed(42)  # 设置随机数状态
mat = np.random.rand(500,500)
mat[mat<0.9] = 0
csr = csr_array(mat)
timeit(lambda : lsmr(csr, b), number=10)
timeit(lambda : lsqr(csr, b), number=10)

测试结果如下

>>> timeit(lambda : lsqr(csr, b), number=10)
0.5240591000001587
>>> timeit(lambda : lsmr(csr, b), number=10)
0.6156221000019286

看来lsmr并没有更快,看来斯坦福也不靠谱(滑稽)。

http://www.wangmingla.cn/news/110226.html

相关文章:

  • 可以做游戏可以视频约会的网站长沙企业网站建设报价
  • htm网站制作百度一下首页登录
  • 深圳网站建设智能小程序欧洲网站服务器
  • 潍坊seo网站推广口碑营销的特点
  • 专门给代购做的网站怎么做好网络销售
  • 爱客crm软件西安seo顾问培训
  • 在个人网站上做电商营业执照长沙网站关键词推广
  • 做网站大概费用常州网站建设
  • 互动创意网站做外贸网站的公司
  • 做养生网站需要证件吗sem和seo是什么职业岗位
  • 网站快速收录付费入口页面设计漂亮的网站
  • 各种免费源码共享网站竞价托管是啥意思
  • 北京网站制作飞沐凌哥seo
  • 提供网站制作价格营销宣传策划方案
  • 宜家供应商自己做网站供货郑州seo关键词排名优化
  • 网站备案每年一次汕头网站建设方案推广
  • mysql python开发网站开发智慧软文
  • 做网站设计都做些什么网站推广外贸
  • 建设一个什么网站赚钱西安seo排名优化推广价格
  • 网站建设的软件是哪个好网络营销的内涵
  • 代理公司注册网朝阳区搜索优化seosem
  • 滨海做网站哪家公司好百度联盟一天多少收入
  • 青提wifi小程序开发教程seo用什么论坛引流
  • 政府网站登录界面模板seo网站推广主要目的不包括
  • 怎么做体育直播网站网站目录
  • 门户网站制作流程小学生抄写新闻20字
  • 展示型网站建设标准武汉seo关键词排名优化
  • 网站建设彩铃定制化网站建设
  • 动态asp.net网站开发推广
  • 文化网站设计经典案例山西疫情最新情况