当前位置: 首页 > news >正文

搜索网站哪个好营销策划咨询

搜索网站哪个好,营销策划咨询,抖音代运营公司可靠吗,如何建设dj网站详情请参考博客: Top 50 matplotlib Visualizations 因编译更新问题,本文将稍作更改,以便能够顺利运行。 1 Dendrogram 树状图根据给定的距离度量将相似的点组合在一起,并根据点的相似性将它们组织成树状的链接。 新建文件Dendrogram.py: …

详情请参考博客: Top 50 matplotlib Visualizations
因编译更新问题,本文将稍作更改,以便能够顺利运行。

1 Dendrogram

树状图根据给定的距离度量将相似的点组合在一起,并根据点的相似性将它们组织成树状的链接。

新建文件Dendrogram.py:

# Import Setup
from Setup import pd
from Setup import plt
import scipy.cluster.hierarchy as shc# Import Data
df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/USArrests.csv')# Plot
plt.figure(figsize=(16, 10), dpi= 80)  
plt.title("USArrests Dendograms", fontsize=22)  
dend = shc.dendrogram(shc.linkage(df[['Murder', 'Assault', 'UrbanPop', 'Rape']], method='ward'), labels=df.State.values, color_threshold=100)  
plt.xticks(fontsize=12)
plt.show()

运行结果为:

在这里插入图片描述

2 Cluster Plot

聚类图可用于划分属于同一聚类的点。下面是一个代表性示例,根据 USArrests 数据集将美国各州分为 5 个组。此聚类图使用“谋杀”和“袭击”列作为 X 轴和 Y 轴。或者,您可以使用第一个到主分量作为 x 轴和 Y 轴。

新建文件Cluster Plot.py:

# Import Setup
from Setup import pd
from Setup import plt
import numpy as np
from sklearn.cluster import AgglomerativeClustering
from scipy.spatial import ConvexHull# Import Data
df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/USArrests.csv')# Agglomerative Clustering
cluster = AgglomerativeClustering(n_clusters=5, affinity='euclidean', linkage='ward')  
cluster.fit_predict(df[['Murder', 'Assault', 'UrbanPop', 'Rape']])  # Plot
plt.figure(figsize=(14, 10), dpi= 80)  
plt.scatter(df.iloc[:,0], df.iloc[:,1], c=cluster.labels_, cmap='tab10')  # Encircle
def encircle(x,y, ax=None, **kw):if not ax: ax=plt.gca()p = np.c_[x,y]hull = ConvexHull(p)poly = plt.Polygon(p[hull.vertices,:], **kw)ax.add_patch(poly)# Draw polygon surrounding vertices    
encircle(df.loc[cluster.labels_ == 0, 'Murder'], df.loc[cluster.labels_ == 0, 'Assault'], ec="k", fc="gold", alpha=0.2, linewidth=0)
encircle(df.loc[cluster.labels_ == 1, 'Murder'], df.loc[cluster.labels_ == 1, 'Assault'], ec="k", fc="tab:blue", alpha=0.2, linewidth=0)
encircle(df.loc[cluster.labels_ == 2, 'Murder'], df.loc[cluster.labels_ == 2, 'Assault'], ec="k", fc="tab:red", alpha=0.2, linewidth=0)
encircle(df.loc[cluster.labels_ == 3, 'Murder'], df.loc[cluster.labels_ == 3, 'Assault'], ec="k", fc="tab:green", alpha=0.2, linewidth=0)
encircle(df.loc[cluster.labels_ == 4, 'Murder'], df.loc[cluster.labels_ == 4, 'Assault'], ec="k", fc="tab:orange", alpha=0.2, linewidth=0)# Decorations
plt.xlabel('Murder'); plt.xticks(fontsize=12)
plt.ylabel('Assault'); plt.yticks(fontsize=12)
plt.title('Agglomerative Clustering of USArrests (5 Groups)', fontsize=22)
plt.show()

运行结果为:

在这里插入图片描述

3 Andrews Curve

Andrews 曲线有助于可视化是否存在基于给定分组的数值特征的固有分组。如果特征(数据集中的列)不能帮助区分组 (cyl),则线将无法很好地隔离,如下所示。

新建文件Andrews Curve.py:

# Import Setup
from Setup import pd
from Setup import plt
from pandas.plotting import andrews_curves# Import
df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mtcars.csv")
df.drop(['cars', 'carname'], axis=1, inplace=True)# Plot
plt.figure(figsize=(12,9), dpi= 80)
andrews_curves(df, 'cyl', colormap='Set1')# Lighten borders
plt.gca().spines["top"].set_alpha(0)
plt.gca().spines["bottom"].set_alpha(.3)
plt.gca().spines["right"].set_alpha(0)
plt.gca().spines["left"].set_alpha(.3)plt.title('Andrews Curves of mtcars', fontsize=22)
plt.xlim(-3,3)
plt.grid(alpha=0.3)
plt.xticks(fontsize=12)
plt.yticks(fontsize=12)
plt.show()

运行结果为:

在这里插入图片描述

4 Parallel Coordinates

平行坐标有助于可视化一个特征是否有助于有效地隔离群体。如果隔离已经实现,该特征在预测该群体时可能非常有用。

新建文件Parallel Coordinates.py:

# Import Setup
from Setup import pd
from Setup import plt
from pandas.plotting import parallel_coordinates# Import Data
df_final = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/diamonds_filter.csv")# Plot
plt.figure(figsize=(12,9), dpi= 80)
parallel_coordinates(df_final, 'cut', colormap='Dark2')# Lighten borders
plt.gca().spines["top"].set_alpha(0)
plt.gca().spines["bottom"].set_alpha(.3)
plt.gca().spines["right"].set_alpha(0)
plt.gca().spines["left"].set_alpha(.3)plt.title('Parallel Coordinated of Diamonds', fontsize=22)
plt.grid(alpha=0.3)
plt.xticks(fontsize=12)
plt.yticks(fontsize=12)
plt.show()

运行结果为:

在这里插入图片描述

http://www.wangmingla.cn/news/135788.html

相关文章:

  • 电子商务网站建设流程是什么html网页制作代码
  • 全能企业网站管理系统代刷网站推广
  • 网站建设 美橙优化科技
  • jeecms 怎么建设网站成都电脑培训班零基础
  • 自己做团购网站怎么样市场推广策略 包括哪些
  • 酒窖设计佛山网络公司 乐云seo
  • 江苏住房和城乡建设厅网站搜索指数的数据来源
  • 自己做的网站如何被百度检索今日最新的新闻
  • 做瞹瞹嗳视频网站百度问答一天能赚100块吗
  • 江门网站建设设计网络营销公司排行
  • 网站分几种抖音推广方案
  • 中国网新重庆无锡百度seo优化
  • 商业网站开发实训内容中国国家人事人才培训网
  • 南皮做网站怎样在百度上发布免费广告
  • wordpress网站制作新网站怎么做优化
  • 网站建设要学编程吗官方网站百度一下
  • 简述网站建设流程上优化seo
  • 合肥家居网站建设怎么样网站的网站建设
  • 秦皇岛网站制作公司网站分析
  • 石碣企业网站建设公司产品推广营销方案
  • 怎么做外链到其他网站培训机构咨询
  • 中山 网站建设一条龙免费人脉推广
  • 扬州市做网站做百度推广的公司电话号码
  • 移动网络服务电话长沙seo就选智优营家
  • 沈阳康平志诚建设集团网站谷歌seo优化排名
  • 柳州网站建设服务在线科技成都网站推广公司
  • 邯郸网站建设服务平台湖人最新消息
  • b2b网站免费建设搜索引擎优化seo网站
  • 有什么网站可以做电台app推广渠道商
  • 重庆教育集团建设公司网站百度推广和百度竞价有什么区别