当前位置: 首页 > news >正文

朔州网站建设优化今日国家新闻

朔州网站建设优化,今日国家新闻,做网站的上市公司,如何自己开一个公众号前脚刚研究了一轮GPT3.5,OpenAI很快就升级了GPT-4,整体表现有进一步提升。追赶一下潮流,研究研究GPT-4干了啥。本文内容全部源于对OpenAI公开的技术报告的解读,通篇以PR效果为主,实际内容不多。主要强调的工作&#xf…

前脚刚研究了一轮GPT3.5,OpenAI很快就升级了GPT-4,整体表现有进一步提升。追赶一下潮流,研究研究GPT-4干了啥。

本文内容全部源于对OpenAI公开的技术报告的解读,通篇以PR效果为主,实际内容不多。主要强调的工作,是“Predictable Scaling”这个概念。

上一版ChatGPT的主要挑战是,因为模型的训练量极大,很难去进行优化(ChatGPT是fine-tuning的模式)。因此,OpenAI希望能够在模型训练初期,就进行优化,从而大幅提升人工调优迭代的效率。而想要进行调优,就得知道当前模型的效果如何。因此,这个问题就被转化为了:如何在模型训练初期,就能够预测最终训练完成后的实际效果。

从结果来看,ChatGPT实现了,仅仅执行千分之一到万分之一的训练量,就可以大致预测模型的结果。

实现原理相对简单,就是在某一个模型的不同训练阶段进行实际效果测量,然后做函数拟合,发现符合幂等曲线。然后再基于采样值,测算一下幂等函数的相关参数,下一轮就可以只进行少量训练,就去预测最终效果了。

至于其他效果上的优化,OpenAI没有进一步解读原理,但整体应该还是基于“训练-奖励”的优化模型,去生成更针对性的奖励模型(比如增加法律、安全之类的奖励判断),以实现更优的效果。

原版内容如下:

3 Predictable Scaling
A large focus of the GPT-4 project was building a deep learning stack that scales predictably. The primary reason is that for very large training runs like GPT-4, it is not feasible to do extensive model-specific tuning. To address this, we developed infrastructure and optimization methods that have very predictable behavior across multiple scales. These improvements allowed us to reliably predict some aspects of the performance of GPT-4 from smaller models trained using 1, 000× – 10, 000× less compute.
3.1 Loss Prediction
The final loss of properly-trained large language models is thought to be well approximated by power laws in the amount of compute used to train the model [35, 36, 2, 14, 15].
To verify the scalability of our optimization infrastructure, we predicted GPT-4’s final loss on our internal codebase (not part of the training set) by fitting a scaling law with an irreducible loss term (as in Henighan et al. [15]): L(C) = aCb + c, from models trained using the same methodology but using at most 10,000x less compute than GPT-4. This prediction was made shortly after the run started, without use of any partial results. The fitted scaling law predicted GPT-4’s final loss with high accuracy (Figure 1).
3.2 Scaling of Capabilities on HumanEval
Having a sense of the capabilities of a model before training can improve decisions around alignment, safety, and deployment. In addition to predicting final loss, we developed methodology to predict more interpretable metrics of capability. One such metric is pass rate on the HumanEval dataset [37], which measures the ability to synthesize Python functions of varying complexity. We successfully predicted the pass rate on a subset of the HumanEval dataset by extrapolating from models trained with at most 1, 000× less compute (Figure 2).
For an individual problem in HumanEval, performance may occasionally worsen with scale. Despite these challenges, we find an approximate power law relationship −EP [log(pass_rate(C))] = α∗C−k
where k and α are positive constants, and P is a subset of problems in the dataset. We hypothesize that this relationship holds for all problems in this dataset. In practice, very low pass rates are difficult or impossible to estimate, so we restrict to problems P and models M such that given some large sample budget, every problem is solved at least once by every model.
We registered predictions for GPT-4’s performance on HumanEval before training completed, using only information available prior to training. All but the 15 hardest HumanEval problems were split into 6 difficulty buckets based on the performance of smaller models. The results on the 3rd easiest bucket are shown in Figure 2, showing that the resulting predictions were very accurate for this subset of HumanEval problems where we can accurately estimate log(pass_rate) for several smaller models. Predictions on the other five buckets performed almost as well, the main exception being GPT-4 underperforming our predictions on the easiest bucket.
Certain capabilities remain hard to predict. For example, the Inverse Scaling Prize [38] proposed several tasks for which model performance decreases as a function of scale. Similarly to a recent result by Wei et al. [39], we find that GPT-4 reverses this trend, as shown on one of the tasks called Hindsight Neglect [40] in Figure 3.
We believe that accurately predicting future capabilities is important for safety. Going forward we plan to refine these methods and register performance predictions across various capabilities before large model training begins, and we hope this becomes a common goal in the field.

http://www.wangmingla.cn/news/133466.html

相关文章:

  • dede织梦织梦更换模板网站百度seo培训班
  • 成都科技网站建设电话成人电脑基础培训班
  • 简约型网站建设关键词优化app
  • 做网站 需要注意什么谈谈自己对市场营销的理解
  • 网站建设案例渠道网站建设制作免费
  • 自己做的网站数据库win优化大师怎么样
  • 个人网站建立步骤珠海网站建设
  • 济南做企业网站公司南昌seo快速排名
  • 用dw做网站的过程北京网络营销推广培训哪家好
  • 帝国cms制作网站地图竞价排名适合百度这样的网络平台吗
  • 徐闻网站开发公司百度seo优化包含哪几项
  • 长春做网站企业信息流广告案例
  • 乐清网站制作公司电话为什么外包会是简历污点
  • 异地备案 网站seo专员工资待遇
  • 南京学习做网站长沙免费网站建站模板
  • 网站规划和建设方案seo优化的方法
  • 北京有名的设计公司宁波seo推广服务
  • 奢侈品网站怎么做tuig优化西安网络优化培训机构公司
  • 宁波cms建站国内设计公司前十名
  • webgis前端开发西安网站seo技术厂家
  • 赣州搜赢网络科技有限公司北京网站seo服务
  • 湘潭做网站 搜搜磐石网络seo研究院
  • 专业做数据的网站有哪些跨境电商培训
  • 杭州电商网站建设网站分享
  • 专业做物流公司网站广州网络营销推广
  • 做八闽最好的中学网站网络营销与直播电商就业前景
  • 找百度公司做网站怎么样班级优化大师下载安装
  • 网站导航栏下拉菜单网页设计制作教程
  • 住房新建网站优化大师 win10下载
  • wordpress的安装搜索引擎优化包括哪些内容