当前位置: 首页 > news >正文

潍坊做网站好看广告推广免费平台

潍坊做网站好看,广告推广免费平台,怎么自己做网站吗,产品包装设计模板1.基本概念及应用场景 回归分析是一种预测性的建模技术,数学建模中常用回归分析技术寻找存在相关关系的变量间的数学表达式,并进行统计推断。例如,司机的鲁莽驾驶与交通事故的数量之间的关系就可以用回归分析研究。回归分析根据变量的…

1.基本概念及应用场景        

        回归分析是一种预测性的建模技术,数学建模中常用回归分析技术寻找存在相关关系的变量间的数学表达式,并进行统计推断。例如,司机的鲁莽驾驶与交通事故的数量之间的关系就可以用回归分析研究。回归分析根据变量的数目分为一元回归和多元回归,根据自变量和因变量的表现形式分为线性和非线性

回归模型:描述因变量y如何依赖于自变量x和误差项e的方程。

回归方程:描述因变量y如何依赖于自变量x的方程。

2.回归分析的一般步骤

  • 确定回归方程中的解释变量和被解释变量
  • 确定回归模型,建立回归方程
  • 对回归方程进行各种检验
  • 用回归方程进行预测

3.一元线性回归分析

1.概念

例子:

  • 人均收入是否显著影响人均食品消费支出
  • 贷款余额是否影响到不良贷款
  • 航班正点率是否对顾客投诉次数有显著影响

回归模型: 

y=\beta _{0}+\beta _{1}x+\epsilon

\beta _{0}:截距

\beta _{1}:斜率

\epsilon:误差项,反映随机因数对y的影响,是不可避免的

回归方程:

y=\beta _{0}+\beta _{1}x

        若回归方程中的未知参数已知,则对于给定的x值,可计算出y的期望值。

        用样本统计量代替未知参数,就得到估计的回归方程,称回归直线。

2.最小二乘法求参数

        常用最小二乘法,即使残差(因变量的观察值与估计值的离差)平方和达到最小求参数:

Q=\sum (y-\widehat{y})^{2}=\sum (y-\widehat{\beta} _{0}-\widehat{\beta }_{1}x)^{2}

展开:

Q=\sum y^{2}+n\widehat{\beta} ^{2}_{0}+\widehat{\beta} ^{2}_{1}\sum x^{2}+2\widehat{\beta}_{0}\widehat{\beta}_{1}\sum x-2\widehat{\beta}_{0}\sum y-2\widehat{\beta}_{1}\sum xy

求偏导并整理:

\left\{\begin{matrix} \widehat{\beta }_{1}=\frac{n\sum xy-\sum x\sum y}{n\sum x^{2}-(\sum x)^2 }\\ \widehat{\beta }_{0}=\overline{y}-\widehat{\beta _{1}}\overline{x} \end{matrix}\right.

代入数据即可得到\widehat{\beta }_{0}\widehat{\beta }_{1}

3.点估计

        将x的值代入回归方程即可得对应\widehat{y}的点估计值。

4.区间估计

估计标准误差:

s_{e}=\sqrt{\frac{\sum (y-\widehat{y})^{2}}{n-k}}

        估计标准误差越小,则数据点围绕回归直线的分散程度越小,回归方程的代表性越大,可靠性越高。

置信区间:

\widehat{y_{0}}\pm t_{\frac{\alpha }{2}}s_{e}\sqrt{\frac{1}{n}+\frac{(x_{0}-\overline{x})^{2}}{\sum (x-\overline{x})^{2}}}

预测区间:

\widehat{y_{0}}\pm t_{\frac{\alpha }{2}}s_{e}\sqrt{1+\frac{1}{n}+\frac{(x_{0}-\overline{x})^{2}}{\sum (x-\overline{x})^{2}}}

\alpha:显著性水平

1-\alpha:置信水平

t_{\frac{\alpha }{2}}:即t_{\frac{\alpha }{2}}(n-k),n-k为残差自由度(样本容量-回归系数的数量),一元线性回归方程中k=2

模型建立和求解的Python代码:

import numpy as np
import statsmodels.api as sm
import scipy.stats as stats
import matplotlib.pyplot as plt
plt.rc('font', family='SimHei')  # 用来正常显示中文标签
plt.rc('axes', unicode_minus=False)  # 用来正常显示负号# 输入数据
x = np.array([143, 145, 146, 147, 149, 150, 153, 154, 155, 156, 157, 158, 159, 160, 162, 164])
y = np.array([88, 85, 88, 91, 92, 93, 93, 95, 96, 98, 97, 96, 98, 99, 100, 102])# 添加截距项
X = sm.add_constant(x)# 求参数值
model = sm.OLS(y, X).fit()
beta = model.params
print("参数值:")
print("beta0 =", beta[0])
print("beta1 =", beta[1])# 点估计
x0 = float(input("x="))
y_pred = beta[0] + beta[1] * x0
print("点估计预测值:", y_pred)# 计算标准误差
se = np.sqrt(model.mse_resid)# 自由度
n = len(x)
df = n - model.df_model - 1# 置信水平和 t 分位数
alpha = 0.05
t = np.abs(stats.t.ppf(alpha/2, df))# 计算置信区间和预测区间
x_mean = np.mean(x)
x_var = np.sum((x - x_mean)**2)
conf_interval = t * se * np.sqrt(1/n + (x - x_mean)**2 / x_var)
pred_interval = t * se * np.sqrt(1 + 1/n + (x - x_mean)**2 / x_var)# 绘制原始数据和回归直线
plt.scatter(x, y, color='blue', marker='*', label='原始数据')
plt.plot(x, model.fittedvalues, color='red', label='回归直线')
plt.xlabel('x')
plt.ylabel('y')# 绘制置信区间和预测区间
plt.fill_between(x, model.fittedvalues - conf_interval, model.fittedvalues + conf_interval, color='gray', alpha=0.3, label='置信区间')
plt.fill_between(x, model.fittedvalues - pred_interval, model.fittedvalues + pred_interval, color='yellow', alpha=0.3, label='预测区间')plt.legend()
plt.show()

5.模型检验

1.回归直线的拟合优度

        回归直线与各观测点的接近程度称为回归直线对数据的拟合优度。

        评价拟合优度的指标:

  • 总平方和(TSS):反映因变量的n个观测值与其均值的总离差

TSS=\sum y_{i}^{2}=\sum (y_{i}-\overline{y}_{i})^{2}

  • 回归平方和(ESS):反映了y的总变差中,由于x与y之间的线性关系引起的y的变化部分

ESS=\sum \widehat{y_{i}}^{2}=\sum (\widehat{y_{i}}-\overline{y}_{i})^{2}

  • 残差平方和(RSS):反映了其他因素对y变差的作用,是不能由回归直线来解释的y的变差部分

RSS=\sum e_{i}^{2}=\sum (y_{i}-\widehat{y_{i}})^{2}99

http://www.wangmingla.cn/news/155079.html

相关文章:

  • 做网站要的带宽是什么产品推广计划怎么写
  • 广东学校网站建设公司百度快照怎么删除
  • 有什么网站接效果图做的深圳全网推广
  • 阿丰 做网站流量精灵网页版
  • 初中生如何做网站怎么自己建网站
  • wordpress主题b站搜索引擎营销是指
  • 做网站高亮设计外包网站
  • 定制型网站怎么做百度推广方式有哪些
  • 网站建设与运营课程总结关键词快速排名怎么做
  • 外贸营销型网站建设百度问答一天能赚100块吗
  • 廊坊网站建设服务西地那非片吃了能延时多久
  • 网站流量统计 设计如何在百度上发自己的广告?
  • 网站 手机版 电脑版 怎么做的关键词排名快照优化
  • 新疆建设学院网站查成绩重庆seo推广服务
  • 品质培训的网站建设广州网站推广
  • 喀什网站制作广州百度搜索排名优化
  • 台州宇洋台州网站建设怎么注册一个自己的网站
  • 网站建设合同附件明细营销推广方案怎么写
  • 做网站能赚钱百度竞价托管外包代运营
  • 哪个网站有天天做股市直播的数字营销公司
  • 行业门户网站建设方案百度手机助手app安卓版官方下载
  • 淘宝客怎么在网站做推广网络营销方式包括哪些
  • 支持wordpress主机太原百度推广排名优化
  • 模板网站建设哪家好网络营销软文范文
  • win7系统做网站服务器惠州市seo广告优化营销工具
  • net网站开发希爱力副作用太强了
  • 设计公司网站多少钱百度推广怎么运营
  • mvc 网站 只列出目录产品推广ppt范例
  • 织梦网站有会员系统怎么做b站新人视频怎么推广
  • 外贸网站外包网站数据分析