当前位置: 首页 > news >正文

西安网站手机网站建设徐州seo排名收费

西安网站手机网站建设,徐州seo排名收费,文章类网站后台,wordpress主页不显示☁️主页 Nowl 🔥专栏《机器学习实战》 《机器学习》 📑君子坐而论道,少年起而行之 文章目录 介绍 记忆功能对比展现 任务描述 导入库 处理数据 前馈神经网络 循环神经网络 编译与训练模型 模型预测 可能的问题 梯度消失 梯…

☁️主页 Nowl

🔥专栏《机器学习实战》 《机器学习》

📑君子坐而论道,少年起而行之 

文章目录

介绍

记忆功能对比展现

任务描述

导入库 

处理数据 

前馈神经网络

循环神经网络

编译与训练模型

模型预测

可能的问题

梯度消失

梯度爆炸

其他的循环神经网络

结语


介绍

RNN也叫循环神经网络,普通的神经网络层的输入都是上一层的输出,而循环神经网络会在RNN层循环指定次数,这样的特点使得RNN在处理序列数据上表现得很好,因为它可以更好地记住前后文的关系

记忆功能对比展现

任务描述

我们有一段数字序列,我们训练一个神经网络,使得该模型能通过任意连在一起的两个数,判断出第三个数

我们先定义数字序列

data_sequence = [1, 3, 5, 2, 4, 9, 7, 6, 8]

导入库 

import numpy as np
from keras.models import Sequential
from keras.layers import SimpleRNN, Dense

处理数据 

# 准备训练数据,使用前两个数字作为输入,预测第三个数字,以此类推
X = []
y = []for i in range(len(data_sequence)-2):X.append([data_sequence[i], data_sequence[i+1]])y.append(data_sequence[i+2])X = np.array(X)
y = np.array(y)# 转换数据形状以适应RNN
X = X.reshape((X.shape[0], X.shape[1], 1))

我们打印X,得到下图结果,结果竖向排列,无法展示完全,X的形状为(7, 2, 1)(两两排列有七组数据,每组数据两个特征,每个特征单独输入)

 

打印y

为每两个数的第三个数

前馈神经网络

接下来我们定义一个简单的前馈神经网络

model = Sequential()
model.add(Dense(500, input_dim=2))
model.add(Dense(1))

 该模型有三层,输入层(没有在这里定义,我们等下输入的数据就充当这一层),一个500个神经元的线性层(输入维度为二),一个输出维度为1的输出层(输入维度为上一层神经元的个数,即500)

循环神经网络

定义一个循环神经网络

# 创建RNN模型
model = Sequential()
model.add(SimpleRNN(500, input_shape=(2, 1)))
model.add(Dense(1))

 该模型有三层,输入层(没有在这里定义,我们等下输入的数据就充当这一层),一个500个神经元的RNN层(input_shape=(2,1)的意思是时间步为2,每个时间步有一个数据,可以理解时间步为网络记忆的长度),一个输出维度为1的输出层(输入维度为上一层神经元的个数,即500)

编译与训练模型

# 编译模型
model.compile(optimizer='adam', loss='mse')# 训练模型
model.fit(X, y, epochs=200, batch_size=1, verbose=2)
  • 编译阶段设置模型的优化器为adam,损失函数为mse
  • 训练部分设置模型训练数据(X,y),设置训练回合为200次,批次为1,即一次输入一组数据,verbose决定了是否打印训练过程中的信息。verbose=2 表示打印每个 epoch 的信息,包括损失值和其他指标。verbose=0表示不打印任何信息,verbose=1表示打印进度条。

模型预测

接下来看看在相同神经元数量和相同训练批次上谁的效果更好吧

# 使用模型进行预测
input_data = np.array([[data_sequence[2], data_sequence[3]]])
predicted_value = model.predict(input_data)[0, 0]# 打印预测结果
print(f"输入序列: {data_sequence[2:4]},预测下一个数字: {predicted_value}")

 我们训练后使用5, 2进行预测,查看原始数据,我们知道下一个数字应该是4,让我们看看两个模型运行的结果吧

前馈神经网络

循环神经网络

可以看到循环神经网络的效果更优

可能的问题

梯度消失

 当在网络的反向传播过程中梯度逐渐减小到几乎为零时,就会出现梯度消失问题。这使得网络难以学习到远距离时间步的依赖关系,因为在反向传播时,较早时间步的信息无法有效传递给较晚时间步。

梯度爆炸

 相反,梯度爆炸是指在反向传播中,梯度变得非常大,这可能导致权重更新变得非常大,模型不稳定。这可能导致数值溢出和无法收敛。

这两个问题在神经网络中都会出现,只是由于RNN的结构,梯度消失与梯度爆炸问题会更加显著

其他的循环神经网络

  • LSTM,LSTM引入了三个门(门是一种控制信息流动的机制)来控制信息的输入、输出和遗忘。
  • GRU,GRU是对LSTM的一种简化版本,它只包含两个门:更新门(Update Gate)和重置门(Reset Gate)。

这两种循环神经网络能有效地应对梯度消失和梯度爆炸的问题,这里先做了解,之后会具体介绍

结语

  • 循环神经网络是深度学习中一种重要的结构,一般用来处理文本,语音的序列数据
  • 我们通过一个比较直观地感受到了RNN的记忆功能
  • 梯度消失与梯度爆炸问题在RNN中更加显著

感谢阅读,觉得有用的话就订阅下本专栏吧

http://www.wangmingla.cn/news/97190.html

相关文章:

  • 增城做网站网站制作企业有哪些
  • 营业执照咋做网等网站第一设计
  • 松江网站建设关键词怎么优化
  • 做化工资讯的网站北京seo多少钱
  • 网站运营与数据分析seo任务平台
  • 空间网站公司官网制作开发
  • 美容培训东莞网站建设中央新闻联播
  • 品牌网站建设阿里巴巴推广
  • 佛山外贸网站建设流程国外搜索引擎排行榜
  • 那个网站教人做冰点他达那非片能延时多久
  • 网站视频不能下载怎么保存视频个人怎么做互联网推广平台
  • 学会网站开发有什么好处苏州疫情最新情况
  • 网站建设流程步骤为需求分析南京最新消息今天
  • 电影网站如何做seo重庆seo公司排名
  • 如何规划政府门户网站建设线上培训机构排名前十
  • wordpress页面分析插件成品网站seo
  • 自己注册公司流程和费用多少google seo
  • 北京电商网站建设哪家好搭建网站步骤
  • 桂林市区有什么好玩的地方景点36优化大师下载安装
  • 网站建设费计入管理费用seo教学平台
  • 没有网站怎么做推广推广工具有哪些
  • 最简单的网站系统网络营销的收获与体会
  • 北京网站建设曝光尚词网网络公司有哪些
  • 找代理产品上哪个平台c盘优化大师
  • 用超轻粘土做网站淘宝推广工具
  • 做设计找素材的+网站有哪些android优化大师
  • 网站建设优化托管百度网盘搜索引擎网站
  • 海口网站建设兼职北京百度搜索排名优化
  • 网站外挂如何做站长推荐产品
  • 主备网站服务器自动切换 win2003免费crm客户管理系统