当前位置: 首页 > news >正文

企业网站管理系统哪个好东莞网络营销销售

企业网站管理系统哪个好,东莞网络营销销售,h5手机网站源码下载,wordpress删除草稿DataWhale 机器学习夏令营第三期 学习记录二 (2023.08.23)——可视化分析1.赛题理解2. 数据可视化分析2.1 用户维度特征分布分析2.2 时间特征分布分析 DataWhale 机器学习夏令营第三期 ——用户新增预测挑战赛 学习记录二 (2023.08.23)——可视化分析 2023.08.17 已跑通baseli…

DataWhale 机器学习夏令营第三期

  • 学习记录二 (2023.08.23)——可视化分析
    • 1.赛题理解
    • 2. 数据可视化分析
      • 2.1 用户维度特征分布分析
      • 2.2 时间特征分布分析

DataWhale 机器学习夏令营第三期
——用户新增预测挑战赛


学习记录二 (2023.08.23)——可视化分析

2023.08.17
已跑通baseline,换为lightgbm基线,不加任何特征线上得分0.52214
添加baseline特征,线上得分0.78176
暴力衍生特征并微调模型参数,线上得分0.86068
2023.08.23
数据分析、衍生特征:0.87488
衍生特征、模型调参:0.89817

交流分享视频:
【DataWhale“用户新增预测挑战赛”交流分享-哔哩哔哩】 https://b23.tv/zZMLtFG

1.赛题理解

在这里插入图片描述

这次比赛特征主要可以分为以下三个维度:

  • 行为维度:eidudmap
    • udmap的key处理成了类别特征
  • 时间维度:common_ts
    • 进行了时间戳特征的提取:day, hour, minute
  • 用户维度:x1~x8

2. 数据可视化分析

使用以下代码绘制前还需做一些设置,具体可以参考如下链接:
https://www.kaggle.com/code/jcaliz/ps-s03e02-a-complete-eda/notebook
该notebook内提供了丰富的可视化分析代码和思路,值得参考。

绘制代码:

def plot_cate_large(col):data_to_plot = (all_df.groupby('set')[col].value_counts(True)*100)fig, ax = plt.subplots(figsize=(10, 6))sns.barplot(data=data_to_plot.rename('Percent').reset_index(),hue='set', x=col, y='Percent', ax=ax,orient='v',hue_order=['train', 'test'])x_ticklabels = [x.get_text() for x in ax.get_xticklabels()]# Secondary axis to show mean of targetax2 = ax.twinx()scatter_data = all_df.groupby(col)['target'].mean()scatter_data.index = scatter_data.index.astype(str)ax2.plot(x_ticklabels,scatter_data.loc[x_ticklabels],linestyle='', marker='.', color=colors[4],markersize=15)ax2.set_ylim([0, 1])# Set x-axis tick labels every 5th valuex_ticks_indices = range(0, len(x_ticklabels), 5)ax.set_xticks(x_ticks_indices)ax.set_xticklabels(x_ticklabels[::5], rotation=45, ha='right')# titlesax.set_title(f'{col}')ax.set_ylabel('Percent')ax.set_xlabel(col)# remove axes to show only one at the endhandles = []labels = []if ax.get_legend() is not None:handles += ax.get_legend().legendHandleslabels += [x.get_text() for x in ax.get_legend().get_texts()]else:handles += ax.get_legend_handles_labels()[0]labels += ax.get_legend_handles_labels()[1]ax.legend().remove()plt.legend(handles, labels, loc='upper center', bbox_to_anchor=(0.5, 1.08), fontsize=12)plt.tight_layout()plt.show()

2.1 用户维度特征分布分析

可视化分析说明:

  1. 研究离散变量['eid', 'x3', 'x4', 'x5‘,'x1', 'x2', 'x6','x7', 'x8'']的分布,蓝色是训练集,黄色是验证集,分布基本一致
  2. 粉色的点是训练集下每个类别每种取值的target的均值,也就是target=1的占比

在这里插入图片描述
该图主要分析类别数较少的离散变量:

  • 训练集和测试集分布比较均匀
  • x1主要集中在 x1=4x2分布比较均匀,x6基本集中在14两个值,x7分布比较均匀,可能是一个关键特征
  • x8可能是性别特征,特征重要性较低
  • udmap_key为提取出的特征,存在缺失值

在这里插入图片描述

  • x3主要集中在41下,占比太大,特征重要性很低

在这里插入图片描述

  • x4中各个类别下target的分布变化较大,可能是一个关键特征
    在这里插入图片描述
  • x5中各个类别同x4,target的分布变化较大,可能是一个关键特征,但特征数量太多在衍生特征时需要注意避免产生稀疏性
    在这里插入图片描述

2.2 时间特征分布分析

主要绘制了common_tsdayhour 的变化情况

在这里插入图片描述

  • day的值和用户增长有很大的关系,可以发现在10、14和17新用户有明显的增长
  • 老用户对应也呈现出增长趋势
    在这里插入图片描述
    绘制了从day=10day=18的新老用户变化情况
  • 新老用户的数量在每天的各个时间段呈现基本相同的趋势
  • 进一步观察原始数据可以发现,三个峰的出现是因为在该三个时间段数据量较其他时间段多
  • 可以进一步绘制出各个时间段人数占全天人数的占比图来进一步分析数据
http://www.wangmingla.cn/news/101056.html

相关文章:

  • 济南网站建设培训东莞网络营销全网推广
  • wordpress enkiseo网页的基础知识
  • 在中国建设工程造价管理协会网站苏州关键词排名提升
  • 建设网站一般流程aso应用商店优化原因
  • wordpress运行c语言seo是搜索引擎吗
  • 网站改版建设 有哪些内容百度竞价推广计划
  • 使用webp的网站温州seo顾问
  • 织梦系统做导航网站最近发生的新闻大事
  • 建设一个网站可以做什么沈阳百度seo排名优化软件
  • 网站备案需要几天全球网站排名
  • 网站搭建与网站建设惠州seo外包公司
  • 政府网站建设国外能看吗玄幻小说百度风云榜
  • 10月哪个网站做电影票活动常德seo公司
  • 做零售外贸网站有哪些软文文章
  • 购买域名网站今日要闻 最新热点
  • 河北邯郸是几线城市优化网站关键词
  • 尺寸在线做图网站朔州网站seo
  • 娄底网站建设的公司网站seo的主要优化内容
  • 网站会员系统wordpress优化营商环境存在问题及整改措施
  • 怎样在网站上做办公家具品牌宣传的推广
  • 申请域网站seo培训费用
  • 深圳B2C网站免费二级域名注册网站有哪些
  • wordpress菜单滑动青岛seo精灵
  • 给个网站谢谢各位了搜索指数在线查询
  • 甘肃机械化建设工程有限公司网站推广找客户平台
  • 做pc网站会连带手机版老铁外链
  • wordpress建站解析学做电商需要多少钱
  • 简单的b2c网站贺州seo
  • 6黄页网站建设淄博seo培训
  • app展示网站模板企业广告宣传