当前位置: 首页 > news >正文

无锡做食品网站的公司贵州百度seo整站优化

无锡做食品网站的公司,贵州百度seo整站优化,ecshop下载,电影网站怎么做laravel目录 二七、离散余弦变换 执行离散余弦变换 (dct) 和逆变换 (idct) 解释 实际应用 JPEG压缩示例(简化版) 二八、图像几何变换 仿射变换 (warpAffine 和 getAffineTransform) 透视变换 (warpPerspective 和 getPerspectiveTransform) 旋转变换 (g…

目录

二七、离散余弦变换

执行离散余弦变换 (dct) 和逆变换 (idct)

解释

实际应用

JPEG压缩示例(简化版)

二八、图像几何变换

仿射变换 (warpAffine 和 getAffineTransform)

透视变换 (warpPerspective 和 getPerspectiveTransform)

旋转变换 (getRotationMatrix2D)

极坐标变换 (warpPolar 和 linearPolar)

http://t.csdnimg.cn/i8pqt —— opencv—常用函数学习_“干货“_总(VIP)

散的正在一部分一部分发,不需要VIP。

资料整理不易,有用话给个赞和收藏吧。


二七、离散余弦变换

        在OpenCV中,离散余弦变换(DCT)和其逆变换(IDCT)是常用于图像压缩和处理的技术。DCT将图像数据从时域转换到频域,而IDCT则是将数据从频域转换回时域。OpenCV提供了两个主要函数:dctidct

离散余弦变换函数
dctidct
执行离散余弦变换执行离散余弦逆变换

执行离散余弦变换 (dct) 和逆变换 (idct)
import cv2
import numpy as np# 读取图像并转换为灰度图
image = cv2.imread('path_to_image.jpg', cv2.IMREAD_GRAYSCALE)# 将图像转换为浮点型
image_float = np.float32(image) / 255.0# 执行离散余弦变换
dct_image = cv2.dct(image_float)# 显示DCT变换后的图像
cv2.imshow('DCT Image', dct_image)
cv2.waitKey(0)# 执行离散余弦逆变换
idct_image = cv2.idct(dct_image)# 将结果转换回0-255范围的图像
idct_image = np.uint8(idct_image * 255)# 显示逆变换后的图像
cv2.imshow('IDCT Image', idct_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

解释

  • dct函数:对输入图像进行离散余弦变换。该函数将图像数据从时域转换到频域,通常用于压缩算法,如JPEG压缩。
  • idct函数:对频域数据进行逆变换,恢复到时域。

实际应用

        离散余弦变换在图像压缩中有广泛的应用。例如,在JPEG压缩中,图像被分割成8x8的块,并对每个块执行DCT变换,然后进行量化处理。

JPEG压缩示例(简化版)
# 读取图像并转换为灰度图
image = cv2.imread('path_to_image.jpg', cv2.IMREAD_GRAYSCALE)
h, w = image.shape# 将图像转换为浮点型
image_float = np.float32(image) / 255.0# 分块处理(8x8)
block_size = 8
dct_blocks = np.zeros_like(image_float)# 执行DCT变换
for i in range(0, h, block_size):for j in range(0, w, block_size):block = image_float[i:i+block_size, j:j+block_size]dct_block = cv2.dct(block)dct_blocks[i:i+block_size, j:j+block_size] = dct_block# 显示DCT变换后的图像
cv2.imshow('DCT Blocks', dct_blocks)
cv2.waitKey(0)# 执行逆DCT变换
idct_blocks = np.zeros_like(dct_blocks)
for i in range(0, h, block_size):for j in range(0, w, block_size):block = dct_blocks[i:i+block_size, j:j+block_size]idct_block = cv2.idct(block)idct_blocks[i:i+block_size, j:j+block_size] = idct_block# 将结果转换回0-255范围的图像
idct_image = np.uint8(idct_blocks * 255)# 显示逆变换后的图像
cv2.imshow('IDCT Blocks', idct_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

        通过这些示例,可以看到如何使用OpenCV中的DCT和IDCT函数来进行离散余弦变换及其逆变换。根据具体的应用需求,可以灵活运用这些函数来实现复杂的图像处理和压缩任务。

二八、图像几何变换

        在OpenCV中,几何变换是图像处理中的基本操作,包括旋转、缩放、平移、透视变换等。下面介绍一些常用的几何变换函数及其使用示例。

图像几何变换函数
logPolarwarpPolarlinearPolargetAffineTransformwarpAffine
对图像进行对数极坐标变换对图像进行极坐标变换对图像进行线性极坐标变换计算仿射变换矩阵对图像进行仿射变换
invertAffineTransformgetPerspectiveTransformwarpPerspectivegetRotationMatrix2D
计算仿射变换矩阵的逆矩阵计算透视变换矩阵对图像进行透视变换计算二维旋转矩阵

仿射变换 (warpAffinegetAffineTransform)
import cv2
import numpy as np# 读取图像
image = cv2.imread('path_to_image.jpg')# 获取图像尺寸
rows, cols, ch = image.shape# 定义三个点及其对应变换后的点
pts1 = np.float32([[50, 50], [200, 50], [50, 200]])
pts2 = np.float32([[10, 100], [200, 50], [100, 250]])# 计算仿射变换矩阵
M = cv2.getAffineTransform(pts1, pts2)# 对图像进行仿射变换
dst = cv2.warpAffine(image, M, (cols, rows))cv2.imshow('Affine Transform', dst)
cv2.waitKey(0)
cv2.destroyAllWindows()
透视变换 (warpPerspectivegetPerspectiveTransform)
# 定义四个点及其对应变换后的点
pts1 = np.float32([[56, 65], [368, 52], [28, 387], [389, 390]])
pts2 = np.float32([[0, 0], [300, 0], [0, 300], [300, 300]])# 计算透视变换矩阵
M = cv2.getPerspectiveTransform(pts1, pts2)# 对图像进行透视变换
dst = cv2.warpPerspective(image, M, (300, 300))cv2.imshow('Perspective Transform', dst)
cv2.waitKey(0)
cv2.destroyAllWindows()
旋转变换 (getRotationMatrix2D)
# 定义旋转中心、角度和缩放因子
center = (cols // 2, rows // 2)
angle = 45
scale = 1.0# 计算旋转矩阵
M = cv2.getRotationMatrix2D(center, angle, scale)# 对图像进行旋转变换
rotated = cv2.warpAffine(image, M, (cols, rows))cv2.imshow('Rotated Image', rotated)
cv2.waitKey(0)
cv2.destroyAllWindows()
极坐标变换 (warpPolarlinearPolar)
# 极坐标变换
polar_image = cv2.warpPolar(image, (cols, rows), (cols//2, rows//2), max(cols, rows) // 2, cv2.WARP_FILL_OUTLIERS)# 对数极坐标变换
log_polar_image = cv2.logPolar(image, (cols//2, rows//2), 40, cv2.WARP_FILL_OUTLIERS)cv2.imshow('Polar Transform', polar_image)
cv2.imshow('Log Polar Transform', log_polar_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

        这些示例展示了如何使用OpenCV中的几何变换函数来处理图像。根据具体的应用需求,可以灵活运用这些函数来实现复杂的图像处理任务。

http://www.wangmingla.cn/news/148583.html

相关文章:

  • php网站开发视频教程南京百度快速排名优化
  • 做网站服务器配置怎么选品牌宣传推广文案
  • 网站建设功能报价表霸榜seo
  • 杭州pc手机网站建设抖音seo推广
  • wordpress 新闻网络推广优化seo
  • 鄂州市住房和城乡建设部网站软文写作
  • 合肥专业网站建设公司哪家好海外seo培训
  • 网站制作上海甘肃省seo关键词优化
  • 网站开发和嵌入式开发哪个教程seo推广排名网站
  • 公司自己的网站怎样做推广优化方案
  • 做网站都需要买什么问题网络营销是什么工作
  • 餐饮营销型网站案例关键词优化公司网站
  • 网站如何防止别人抄袭关键词优化有哪些作用
  • 学生作业做网站需要什么搜索引擎哪个好
  • 做爰视频网站百度输入法下载
  • 北京东城网站建设公司自助发外链网站
  • 做面膜的网站宁德市区哪里好玩
  • 开发网站网络公司排行优化关键词是什么意思
  • 常德市网站建设搜索引擎营销策略有哪些
  • 网站做不做双解析加强服务保障满足群众急需i
  • 石灰土做击实检测网站怎么填seo日常工作内容
  • 微信官方网站怎么进入上海网站推广系统
  • 武汉做网站的德升瑞杰关键词排名关键词快速排名
  • 做网站用哪里的服务器比较好sem推广优化
  • 惠安网站建设报价杭州10大软件开发公司
  • 英文都不懂 学网站建设维护难吗搜索排名怎么做
  • 宣传册设计及网站建设谷歌浏览器搜索入口
  • 深圳做律师网站公司百度总部电话
  • 新郑整站优化成都短视频代运营
  • 企业网站建设公司怎么收费如何开发一款app软件