当前位置: 首页 > news >正文

爱空间家装公司电话济南seo网站排名关键词优化

爱空间家装公司电话,济南seo网站排名关键词优化,天津建设网站首页,用asp做网站课程OpenCV官方教程中文版 —— Hough 直线变换 前言一、原理二、OpenCV 中的霍夫变换三、Probabilistic Hough Transform 前言 目标 • 理解霍夫变换的概念 • 学习如何在一张图片中检测直线 • 学习函数:cv2.HoughLines(),cv2.HoughLinesP() 一、原理…

OpenCV官方教程中文版 —— Hough 直线变换

  • 前言
  • 一、原理
  • 二、OpenCV 中的霍夫变换
  • 三、Probabilistic Hough Transform

前言

目标

理解霍夫变换的概念

学习如何在一张图片中检测直线

学习函数:cv2.HoughLines(),cv2.HoughLinesP()

一、原理

霍夫变换在检测各种形状的的技术中非常流行,如果你要检测的形状可以用数学表达式写出,你就可以是使用霍夫变换检测它。及时要检测的形状存在一点破坏或者扭曲也可以使用。我们下面就看看如何使用霍夫变换检测直线。

一条直线可以用数学表达式 y = mx + c 或者 ρ = x cos θ + y sin θ 表示。ρ 是从原点到直线的垂直距离,θ 是直线的垂线与横轴顺时针方向的夹角(如果你使用的坐标系不同方向也可能不同,我是按 OpenCV 使用的坐标系描述的)。如下图所示:

在这里插入图片描述
所以如果一条线在原点下方经过,ρ 的值就应该大于 0,角度小于 180。但是如果从原点上方经过的话,角度不是大于 180,也是小于 180,但 ρ 的值小于 0。垂直的线角度为 0 度,水平线的角度为 90 度。

让我们来看看霍夫变换是如何工作的。每一条直线都可以用 (ρ, θ) 表示。所以首先创建一个 2D 数组(累加器),初始化累加器,所有的值都为 0。行表示 ρ,列表示 θ。这个数组的大小决定了最后结果的准确性。如果你希望角度精确到 1 度,你就需要 180 列。对于 ρ,最大值为图片对角线的距离。所以如果精确度要达到一个像素的级别,行数就应该与图像对角线的距离相等。

想象一下我们有一个大小为 100x100 的直线位于图像的中央。取直线上的第一个点,我们知道此处的(xy)值。把 xy 带入上边的方程组,然后遍历 θ 的取值:0,1,2,3,. . .,180。分别求出与其对应的 ρ 的值,这样我们就得到一系列(ρ, θ)的数值对,如果这个数值对在累加器中也存在相应的位置,就在这个位置上加 1。所以现在累加器中的(50,90)=1。(一个点可能存在与多条直线中,所以对于直线上的每一个点可能是累加器中的多个值同时加 1)。

现在取直线上的第二个点。重复上边的过程。更新累加器中的值。现在累加器中(50,90)的值为 2。你每次做的就是更新累加器中的值。对直线上的每个点都执行上边的操作,每次操作完成之后,累加器中的值就加 1,但其他地方有时会加 1, 有时不会。按照这种方式下去,到最后累加器中(50,90)的值肯定是最大的。如果你搜索累加器中的最大值,并找到其位置(50,90),这就说明图像中有一条直线,这条直线到原点的距离为 50,它的垂线与横轴的夹角为 90 度。下面的动画很好的演示了这个过程

在这里插入图片描述
GIF原网址:Image Courtesy: Amos Storkey

这就是霍夫直线变换工作的方式。很简单,也许你自己就可以使用 Numpy搞定它。

二、OpenCV 中的霍夫变换

上面介绍的整个过程在 OpenCV 中都被封装进了一个函数:cv2.HoughLines()。返回值就是(ρ, θ)。ρ 的单位是像素,θ 的单位是弧度。这个函数的第一个参数是一个二值化图像,所以在进行霍夫变换之前要首先进行二值化,或者进行Canny 边缘检测。第二和第三个值分别代表 ρθ 的精确度。第四个参数是阈值,只有累加其中的值高于阈值时才被认为是一条直线,也可以把它看成能检测到的直线的最短长度(以像素点为单位)。

# -*- coding: utf-8 -*-
import cv2
import numpy as np
img = cv2.imread('dave.jpg')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray,50,150,apertureSize = 3)
lines = cv2.HoughLines(edges,1,np.pi/180,200)
for rho,theta in lines[0]:a = np.cos(theta)b = np.sin(theta)x0 = a*rhoy0 = b*rhox1 = int(x0 + 1000*(-b))y1 = int(y0 + 1000*(a))x2 = int(x0 - 1000*(-b))y2 = int(y0 - 1000*(a))cv2.line(img,(x1,y1),(x2,y2),(0,0,255),2)
cv2.imwrite('houghlines3.jpg',img)

在这里插入图片描述

三、Probabilistic Hough Transform

从上边的过程我们可以发现:仅仅是一条直线都需要两个参数,这需要大量的计算。Probabilistic_Hough_Transform 是对霍夫变换的一种优化。它不会对每一个点都进行计算,而是从一幅图像中随机选取(是不是也可以使用图像金字塔呢?)一个点集进行计算,对于直线检测来说这已经足够了。但是使用这种变换我们必须要降低阈值(总的点数都少了,阈值肯定也要小呀!)。下图是对两种方法的对比。

在这里插入图片描述
OpenCV 中使用的 Matas, J. ,Galambos, C. 和 Kittler, J.V. 提出的Progressive Probabilistic Hough Transform。这个函数是 cv2.HoughLinesP()。它有两个参数。

• minLineLength - 线的最短长度。比这个短的线都会被忽略。

• MaxLineGap - 两条线段之间的最大间隔,如果小于此值,这两条直线就被看成是一条直线。

更加给力的是,这个函数的返回值就是直线的起点和终点。而在前面的例子中,我们只得到了直线的参数,而且你必须要找到所有的直线。而在这里一切都很直接很简单。

# -*- coding: utf-8 -*-
import cv2
import numpy as np
img = cv2.imread('dave.jpg')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray,50,150,apertureSize = 3)
minLineLength = 100
maxLineGap = 10
lines = cv2.HoughLinesP(edges,1,np.pi/180,100,minLineLength,maxLineGap)
for x1,y1,x2,y2 in lines[0]:
cv2.line(img,(x1,y1),(x2,y2),(0,255,0),2)
cv2.imwrite('houghlines5.jpg',img)

结果如下:
在这里插入图片描述

http://www.wangmingla.cn/news/119477.html

相关文章:

  • 网站建设中ftp起什么作用广州关键词seo
  • 两学一做登录网站目前最牛的二级分销模式
  • 个人网站 外贸淘宝的前100个关键词排名
  • 公众号微网站开发推广游戏赚钱的平台
  • 用dw做网站的过程seo研究中心好客站
  • 做网站名词百度运营优化师
  • 天津餐饮团购网站建设站长平台网站
  • 江苏专业做网站的公司网络市场营销策划书
  • 天河网站建设集团免备案域名
  • 如果建立网站安徽seo人员
  • 做外语网站的公司媒体公关是做什么的
  • 常平做网站公司手机网站免费客服系统
  • 动漫网站怎么做的重庆旅游seo整站优化
  • 食品包装设计规范及包装标准福建seo学校
  • 常州网站建设czyzjsecond是什么意思
  • 长春网站优化指导墨子学院seo
  • 关于网站建设中原创文章的一些想法教育机构
  • 优化前网站现状分析内蒙古网站seo
  • 深圳龙岗网站建设培训学校培训机构需要哪些证件
  • 长春火车站最新通知青岛网络科技公司排名
  • wordpress 阅读更多seo教程网站优化
  • 在线做网站 自动生成手机版广州最新政策
  • 个人网站有备案吗网络舆情监测系统软件
  • 网站建设建站新闻式软文
  • 兼职做诚信网站认证搜索引擎大全排名
  • 谁会在西安做网站的吗怎么样免费做网站
  • 网站开发毕业设计摘要范文b2b网站
  • 建设网站会员登陆网站如何提交百度收录
  • wordpress cache插件西安百度提升优化
  • wordpress tag 输出班级优化大师的功能有哪些