当前位置: 首页 > news >正文

做动态网站 语音表达广告优化师工作内容

做动态网站 语音表达,广告优化师工作内容,星火教育培训机构,四川建设信息共享网站【Pandas驯化-03】Pandas中常用统计函数mean、count、std、info使用 本次修炼方法请往下查看 🌈 欢迎莅临我的个人主页 👈这里是我工作、学习、实践 IT领域、真诚分享 踩坑集合,智慧小天地! 🎇 相关内容文档获取 微…

【Pandas驯化-03】Pandas中常用统计函数mean、count、std、info使用
 
本次修炼方法请往下查看
在这里插入图片描述

🌈 欢迎莅临我的个人主页 👈这里是我工作、学习、实践 IT领域、真诚分享 踩坑集合,智慧小天地!
🎇 相关内容文档获取 微信公众号
🎇 相关内容视频讲解 B站

🎓 博主简介:AI算法驯化师,混迹多个大厂搜索、推荐、广告、数据分析、数据挖掘岗位 个人申请专利40+,熟练掌握机器、深度学习等各类应用算法原理和项目实战经验

🔧 技术专长: 在机器学习、搜索、广告、推荐、CV、NLP、多模态、数据分析等算法相关领域有丰富的项目实战经验。已累计为求职、科研、学习等需求提供近千次有偿|无偿定制化服务,助力多位小伙伴在学习、求职、工作上少走弯路、提高效率,近一年好评率100%

📝 博客风采: 积极分享关于机器学习、深度学习、数据分析、NLP、PyTorch、Python、Linux、工作、项目总结相关的实用内容。

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

🌵文章目录🌵

  • 🎯 一、基本介绍
  • 💡 二、使用方法
    • 常用函数
    • 创建DataFrame
  • 🔍 三、进阶用法
  • 🔍 四、注意事项
  • 🔧 五、总结

下滑查看解决方法

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

🎯 一、基本介绍

  Pandas中的统计函数是数据分析中不可或缺的工具,它们可以帮助我们快速计算数据集中的描述性统计数据,如均值、中位数、标准差等,可以快速的对数据进行分布分析、异常值分析、数据类型等基本数据统计分析。

💡 二、使用方法

常用函数

  Pandas 提供了很多统计函数,以下是一些常用的:

  • mean(): 计算均值
  • median(): 计算中位数
  • std(): 计算标准差
  • var(): 计算方差
  • sum(): 计算总和
  • min(): 找到最小值
  • max(): 找到最大值
  • count(): 数值的个数
  • info(): 总体数据分布

创建DataFrame

import pandas as pd
data = {'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eva'],'Age': [24, 27, 22, 32, 29],'Income': [50000, 54000, 35000, 62000, 58000]
}
df = pd.DataFrame(data)
# 计算年龄的均值
mean_age = df['Age'].mean()
print("Mean Age:", mean_age)# 计算收入的中位数
median_income = df['Income'].median()
print("Median Income:", median_income)# 计算年龄的标准差
std_age = df['Age'].std()
print("Standard Deviation of Age:", std_age)# 计算年龄的方差
var_age = df['Age'].var()
print("Variance of Age:", var_age)# 计算所有人的总收入
total_income = df['Income'].sum()
print("Total Income:", total_income)# 找到年龄的最大值和最小值
max_age = df['Age'].max()
min_age = df['Age'].min()
print("Max Age:", max_age, "Min Age:", min_age)

  

🔍 三、进阶用法

   当我们想要对整体的数据进行分布的查看时,需要查看各个列是否有缺失值,以及每个列的数据格式是什么样子时,这个时候需要可以通过info函数来获取相关的结果,具体的代码如下所示:

    print(df.info())<class 'pandas.core.frame.DataFrame'>RangeIndex: 5 entries, 0 to 4Data columns (total 3 columns):#   Column  Non-Null Count  Dtype ---  ------  --------------  ----- 0   Name    5 non-null      object1   Age     5 non-null      int64 2   Income  5 non-null      int64 dtypes: int64(2), object(1)memory usage: 248.0+ bytesNone

  从上面的输出结果可以看出来,每个列是否有缺失值,以及每个列中的数据格式是什么样子的。
  

🔍 四、注意事项

  对上述的各个统计函数在使用的过程中需要注意的一些事项,不然可能会出现error,具体主要为:

  • 确保在使用统计函数之前,数据是干净且适合进行统计分析的。
  • 某些统计函数,如 mean() 和 median(),可能会受到异常值的影响。在这种情况下,可能需要先进行数据清洗或转换。
  • 当使用 std() 和 var() 时,要注意它们计算的是样本标准差和方差还是总体标准差和方差。默认情况下,Pandas 计算的是总体标准差和方差(不使用 Bessel’s correction)。

🔧 五、总结

  Pandas 的统计函数是数据分析中的强大工具,它们可以帮助我们快速获取数据的关键信息。通过上述示例,我们可以看到如何使用这些函数来分析数据集。然而,为了得到准确的分析结果,我们需要确保数据的质量,并注意函数的使用条件。希望这篇博客能帮助你更好地利用 Pandas 进行数据分析。

http://www.wangmingla.cn/news/141864.html

相关文章:

  • 杭州开发网站的公司哪家好百度搜索引擎的网址
  • 用什么建网站seo搜索引擎优化简历
  • 交通建设集团蓝商分公司网站优秀网页设计
  • 网页游戏网站开发统计网站访问量
  • 胶州网站制作宁波seo关键词优化报价
  • 谷歌上怎样做网站百度账号安全中心官网
  • 手机端网站怎么制作企业查询系统官网
  • vue做直播网站集团网站推广
  • 怎么在百度搜索到我的网站seo具体怎么优化
  • wordpress 搭建网站百度seo优化招聘
  • 新疆网站党建设备seo技术培训东莞
  • go做的网站百度秒收录神器
  • 南昌个人做网站东莞网络营销
  • 用cms织梦做网站图文教程国外免费ip地址
  • 女装网站建设百度蜘蛛池自动收录seo
  • php网站后台建设互联网产品营销策划方案
  • 花钱做推广广告哪个网站好百度推广要自己建站吗
  • 网站标题更新百度店铺
  • 建设银行卡查询网站搜索引擎推广法
  • jeecg 3.7 网站开发洛阳市网站建设
  • 做网站所需要的技术网络seo是什么意思
  • 观澜网站建设怎么自己制作一个网站
  • 制作 网站 盈利软文范例大全500字
  • 网络推广具体方式有哪些外贸seo是啥
  • 网站 建设 深圳免费开发网站
  • 怎么看别人网站在哪里做的外链seo三人行论坛
  • 机械模板网站深圳搜索优化排名
  • 成都做网站的百度信息流推广和搜索推广
  • 济源市网站建设百度推广网站平台
  • 哪里有网站制作设计刷死粉网站推广