当前位置: 首页 > news >正文

餐饮网站建设方案百度推广效果

餐饮网站建设方案,百度推广效果,wordpress是主机吗,百度网页制作步骤1.归并排序 基本思想: 归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个…

1.归并排序

基本思想:
归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。 归并排序核心步骤:

相当于每次把待排数据分为两个子区间,如果每个子区间有序,再让两个子区间归并起来也有序,那整体就有序了。我们可以按照二叉树的思想,把子区间再分为两份,使子区间的子区间有序.......直到子区间分无可分为止。

具体过程如下:

那该如何让两个有序子区间归并呢?

直接在数组中肯定不行,这样会发生数据的覆盖。所以我们可以像之前合并两个有序数组一样,另外开辟一个空间tmp,依次比较两个有序子区间的值,每次比较后把较小的放在tmp中,如果其中一个子区间提前结束,就把另外一个子区间的剩余的数据全放进tmp,最后把tmp中的数据拷贝回原数组。

使用递归实现:

#include<stdio.h>
#include<stdlib.h>
void _MegeSort(int* a, int begin, int end,int*tmp)
{//只剩一个数据,递归结束if (begin == end){return;}int mid = (begin + end) / 2;//递归子区间,分为两部分_MegeSort(a, begin, mid, tmp);_MegeSort(a, mid+1, end, tmp);int begin1 = begin, end1 = mid;int begin2 = mid + 1, end2 = end;int j = begin;//两部分比较,每次小的放入tmpwhile (begin1 <= end1 && begin2 <= end2){if (a[begin1] < a[begin2]){tmp[j++] = a[begin1++];}else{tmp[j++] = a[begin2++];}}//哪部分有剩余,全部放入tmpwhile (begin1 <= end1){tmp[j++] = a[begin1++];}while (begin2 <= end2){tmp[j++] = a[begin2++];}//拷贝到原数组memcpy(a + begin, tmp + begin, sizeof(int) * (end - begin + 1));
}
void MegeSort(int* a, int n)
{int* tmp = (int*)malloc(sizeof(int) * n);_MegeSort(a, 0, n - 1, tmp);free(tmp);
}void Print(int* a, int n)
{for (int i = 0; i < n; i++){printf("%d ",a[i]);}printf("\n");
}
int main()
{int a[] = { 1,4,9,6,3,5,2,8,10,7,11,1};MegeSort(a, sizeof(a) / sizeof(int));Print(a, sizeof(a) / sizeof(int));return 0;
}

注意:

1. 因为每次递归的子区间都不一定是从0开始的,所以我们拷贝数据时,最好从begin的位置开始:

//拷贝到原数组
memcpy(a + begin, tmp + begin, sizeof(int) * (end - begin + 1));

2. 在代码中j作为tmp的坐标,每次往tmp中放入数据后都要加一,但不能初始化为0,否则每次递归进入,j的值都会清0,所以最好初始化:j=begin

归并排序的复杂度:

时间复杂度O(N*logN)

归并排序每次递归都要把待排数据分为两份,相当于二分法,那一共有logN层递归,而每次递归都要比较数据,要把每个数据都遍历一遍,每层的时间复杂度就是O(N),所以总共的时间复杂度是O(N*logN)。

空间复杂度:O(N) 

刚开始就开辟了空间,此时就已经是O(N)了,而递归过程中函数栈帧的创建是logN,所以总的空间复杂度是:O(N+logN),但是量级没变,还是O(N)。

2.非递归实现归并排序

非递归实现归并排序,我们只需模拟上述的递归过程即可,把递归过程转换为:把数据先分为2个一组,全部归并一遍,拷贝回原数组,然后4个一组,全部归并一遍,拷贝回原数组,再8个一组, 全部归并一遍,拷贝回原数组,

那我们就可以设置一个gap,两个数据为一组时,gap=1,每归并一组数据就往后跳2*gap步,直到全部归并一遍,再次分组,这次gap=2,每归并一组数据往后跳2*gap步,直到全部归并一遍,下次gap=4,跳2*gap步.....,直到gap>n就停止,

代码如下:

void MegeSortNonR(int* a, int n)
{int* tmp = (int*)malloc(sizeof(int) * n);if (tmp == NULL){perror("malloc fail\n");return;}int gap = 1;while (gap < n){int j = 0;for (int i = 0; i < n; i += 2 * gap){int begin1 = i, end1 = i + gap - 1;int begin2 = i + gap, end2 = i + 2 * gap - 1;//两部分比较,每次小的放入tmpwhile (begin1 <= end1 && begin2 <= end2){if (a[begin1] < a[begin2]){tmp[j++] = a[begin1++];}else{tmp[j++] = a[begin2++];}}//哪部分有剩余,全部放入tmpwhile (begin1 <= end1){tmp[j++] = a[begin1++];}while (begin2 <= end2){tmp[j++] = a[begin2++];}}memcpy(a, tmp, sizeof(int) * n);gap *= 2;}free(tmp);
}

测试一下:

上面结果看起来,我们排序成功了,但是上述代码真的对吗?

上面代码我们在测试时用的是8个数据,但是如果用9个、10个等,就会发现排序并不会成功,可能程序还会崩掉,这是为什么呢?

因为我们在分组时,是按照固定的2的次方分的,一旦数据个数不是2、4、8的次方,后面归并时就会发生越界问题。

下面我们给10个数据打印一下边界,会发现,有三种越界的方式,:

那我们对这三种情况分别做一下处理:

第1、2种情况出现时,我们直接break,第三种情况,我们修改边界,令end2=n-1,但是注意直接break后,第1、2种情况往tmp中归并时会少一部分数据(如上图蓝框所示),所以最后把tmp的数据往a中拷贝时,不能一次性全部拷贝回去,否则a中这些数据就永远丢失了,所以最好归并一段,拷贝一段,这样拷贝过去的数据只会把前面的数据覆盖,没参与归并的数据还在a中。

代码如下:

void MegeSortNonR(int* a, int n)
{int* tmp = (int*)malloc(sizeof(int) * n);if (tmp == NULL){perror("malloc fail\n");return;}int gap = 1;while (gap < n){int j = 0;for (int i = 0; i < n; i += 2 * gap){int begin1 = i, end1 = i + gap - 1;int begin2 = i + gap, end2 = i + 2 * gap - 1;if (end1 >= n || begin2 >= n){break;}//修正if (end2 >= n){end2 = n - 1;}//两部分比较,每次小的放入tmpwhile (begin1 <= end1 && begin2 <= end2){if (a[begin1] < a[begin2]){tmp[j++] = a[begin1++];}else{tmp[j++] = a[begin2++];}}//哪部分有剩余,全部放入tmpwhile (begin1 <= end1){tmp[j++] = a[begin1++];}while (begin2 <= end2){tmp[j++] = a[begin2++];}//归并一段,拷贝一段memcpy(a+i, tmp+i, sizeof(int) * (end2-i+1));}gap *= 2;}free(tmp);
}

3.计数排序

基本思想:

1. 统计每个数据出现的次数。

2. 根据数据的次数排序。 

如果我们要排序的数在0~9之间,我们可以像上面一样开辟10个int大小的空间,统计待排数据中每个数据的个数,在开辟出的数组的相应下标处计数,那如果我们要排序的数据在100~109之间呢?难道开辟110个空间吗?

当然不是,我们可以做相对映射,在开辟空间之前,先找到待排数据中的最小值和最大值,开辟空间的大小就是:sizeof(int)*(max-min+1),开辟出的数组下标应该是:0~9,0~9下标的位置分别对应的是100~109,计数时,在下标为该数据减待排数据中的最小值的位置统计次数,例如:109就在109-100=9的下标处统计次数,统计完排序的时候再加上最小值即可。

代码如下:

#include<stdio.h>
#include<stdlib.h>
void CountSort(int* a, int n)
{int min = a[0], max = a[0];//找最大值和最小值for (int i = 0; i < n; i++){if (a[i] < a[0]){min = a[i];}if (a[i] > a[0]){max = a[i];}}int range = max - min + 1;int* count = (int*)malloc(sizeof(int) * range);memset(count, 0, sizeof(int) * range);//计数for (int i = 0; i < n; i++){count[a[i] - min]++;}//排序int k = 0;for (int j = 0; j < range; j++){while (count[j]--){a[k++] = j + min;}}
}
//打印函数
Print(int* a, int n)
{for (int i = 0; i < n; i++){printf("%d ", a[i]);}printf("\n");
}
int main()
{int a[] = { 6,1,6,7,9,6,4,5,6,1 };CountSort(a, sizeof(a) / sizeof(int));Print(a, sizeof(a) / sizeof(int));return 0;
}

计数排序的复杂度:

时间复杂度:O(N+range)

寻找最大值和最小值时,遍历一遍数组,时间复杂度是:O(N),由于待排数据的范围是range,排序时所耗费的时间复杂度是:O(range),所以最终的时间复杂度是:O(N+range)

如果知道N和range的大小,N大,就是O(N),range大,就是O(range)

空间复杂度:O(range)

额外开辟的空间个数是range,所以空间复杂度就是:O(range)

4.排序的复杂度和稳定性

总结如下:

 以上就是排序学习的全部内容了,到这,数据结构的学习就告一段落了,近期会停更一段时间,用来复习,后面将继续学习C++的知识,

未完待续。。。

http://www.wangmingla.cn/news/18778.html

相关文章:

  • 在网站写小说怎么做封面国外域名注册
  • 软件开发行业市场分析网站seo技术教程
  • 官网网站怎么创建seo网站快排
  • 做网站的公司怎么赚钱自己如何制作网页
  • 世界软件公司排名南宁seo推广服务
  • 可以自己画图设计的软件seo网站优化案例
  • 怎么做钓鱼网站呢百度线上推广
  • 建网站 就能开店宁波seo推广咨询
  • 图文广告加盟哪家好长沙靠谱seo优化价格
  • 263企业邮箱修改密码seo顾问多少钱
  • 批发市场网上进货渠道有哪些申泽seo
  • java .net 做网站没前途优化seo可以从以下几个方面进行
  • 设计相关的网站自制网站 免费
  • 怎么宣传自己的网站推广白度指数
  • gis网站开发教程企业网站建设方案范文
  • 网站建设后台管理便捷百度关键词搜索引擎
  • 珠海市研发网站建设百度一下你就知道官网
  • 网站开发前端关键词优化是什么
  • 成都抢先看新钱新闻全搜索seo站长查询
  • 网站评论管理怎么做东莞seo网络培训
  • 哪些网站可做矿机期货seo网站推广什么意思
  • 创意江苏网站建设郑州网络推广大包
  • 示范校建设平台网站怎么自己刷推广链接
  • 手机端网站制作seo创业
  • 做网站工资怎么样网络的推广
  • 微信小程序开发教程详解免费seo网站自动推广软件
  • 网站有备案号吗win10优化大师有用吗
  • 网站建设维护人员岗位淘宝关键词查询工具哪个好
  • 网站开发公司网站模板地推十大推广app平台
  • 用自己电脑做服务器建网站免费广告推广