当前位置: 首页 > news >正文

深圳市建设行业门户网站郑州seo外包收费标准

深圳市建设行业门户网站,郑州seo外包收费标准,济南做网站哪家便宜,wordpress点击文章404【实验名称】 实验一:绘制板块层级图 【实验目的】 1. 掌握数据文件读取 2. 掌握数据处理的方法 3. 实现板块层级图的绘制 【数据介绍】Instacart Market Basket Analysis 1. 数据说明 数据共有300 0000orders, 20 0000users, …

【实验名称】

实验一:绘制板块层级图

【实验目的】

1. 掌握数据文件读取

2. 掌握数据处理的方法

3. 实现板块层级图的绘制

 【数据介绍】Instacart Market Basket Analysis

1. 数据说明
      数据共有300 0000orders,
      20 0000users,
      5000products, 
      每个user提供有4-100个orders
2. 各数据内容了解
   aisles:产品摆放位置说明
   order_products__prior:订单产品关联表
   orders.csv: 用户下单记录表。    
   products.csv: 产品ID分类,及其摆放位置的关系表
   departments.csv:  产品分类表
3. 目标分析
   目标是预测用户下次购买时,可能再次购买的产品。
   即,用户历史购买的产品,那些是用户下次购买还会购买的。
4. 训练数据构建
   order_id, product_id(订单中的一个产品), lable(是否下次购买)。
  (1)产品特征
      1)产品被购买次数。
      2)产品被重复购买次数
      3)产品被重复购买次数/总的购买次数。
      4)产品在不同week被购买次数
      5)产品在不同hour被购买次数。
  (2)用户特征
      1)用户总下单次数。
      2)用户总购买量。
      3)用户每单平均购买量。
      4)用户距离上一次购物时间。
      5)用户频繁购买是周几。
      6)用户购买当天小时。
      7)用户购买商品数(去重)
      8)用户购买最多的商品
      7)用户购买最少的商品。
      9)用户在不同week购买最多,以及最少的商品。
      10)用户在不同hour购买最多,以及最少的商品。
  (3)user_products特征
      1)该用户购买该商品次数/该用户下单次数。
      2)该用户上一次购买该商品距离现在天数。
      3)该用户上一次购买该商品平均week日期。
      4)该用户上一次购买该商品平均时间。
      5)该用户购买该商品的频率

 Instacart 的数据科学团队在提供这种令人愉悦的购物体验方面发挥着重要作用。目前,他们使用交易数据来开发模型,以预测用户在会话期间会再次购买、首次尝试或下次添加到购物车的产品。

无论您是从精心策划的购物清单中购物,还是让奇思妙想引导您放牧,我们独特的美食仪式都定义了我们是谁。Instacart 是一款杂货订购和送货应用程序,旨在让您在需要时轻松地将您个人最喜欢的和主食装满您的冰箱和食品储藏室。通过 Instacart 应用程序选择产品后,个人购物者会查看您的订单并为您进行店内购物和送货。

Instacart 的数据科学团队在提供这种令人愉悦的购物体验方面发挥着重要作用。目前,他们使用交易数据来开发模型,以预测用户在会话期间会再次购买、首次尝试或下次添加到购物车的产品。最近,Instacart 开源了这些数据 - 请参阅他们的博客文章 300 万个 Instacart 订单。

 【实验原理】

板块层级图(treemap)是一种基于面积的可视化方式,通过每一个板块(通常为矩形)的尺寸大小进行度量。外部矩形代表父类别,而内部矩形代表子类别。我们也可以通过板块层级图简单的呈现比例关系,不过它更擅于呈现树状结构的数据。

读取绘图所用的数据,并对数据进行处理将数据处理成我们可以使用的形式,绘制板块层级图,设置标签和标题。

【实验环境】

Windows 11,python3.11.1,pycharm professional 2024.2.1,jupyter notebook

【实验步骤】

题目一:安装pandas、matplotlib、seaborn、squarify

1、输入命令:pip install pandas

2、输入命令:pip install matplotlib

3、输入命令:pip install seaborn

  1. 输入命令:pip install squarify

题目二:读取数据

在这里我们使用pandas库中的read_csv函数来读取这3个数据文件。

import pandas as pdproducts_df = pd.read_csv('products.csv')
aisles_df = pd.read_csv('aisles.csv')
departments_df = pd.read_csv('departments.csv')
aisles_df.head(10)

数据读取的结果(aisles_df部分数据读取结果):

题目三:数据预处理

我们需要根据源表对目标表进行匹配查询,使用merge函数进行操作。

order_products_prior_df = pd.merge(products_df, aisles_df, on='aisle_id', how='left')
order_products_prior_df = pd.merge(order_products_prior_df, departments_df, on='department_id', how='left')
order_products_prior_df.head()
temp = order_products_prior_df[['product_name', 'aisle', 'department']]
temp = pd.concat([order_products_prior_df.groupby('department')['product_name'].nunique().rename('products_department'),order_products_prior_df.groupby('department')['aisle'].nunique().rename('aisle_department')
], axis=1).reset_index()
temp = temp.set_index('department')
temp2 = temp.sort_values(by="aisle_department", ascending=False)

进行匹配操作后的数据。

print(temp)

print(temp2)

 

题目四:绘制板块层级图

1.绘制初始的板块层级图

cmap = matplotlib.cm.viridis
mini, maxi = temp2.products_department.min(), temp2.products_department.max()
norm = matplotlib.colors.Normalize(vmin=mini, vmax=maxi)
colors = [cmap(norm(value)) for value in temp2.products_department]
colors[1] = "#FBFCFE"
labels = ["%s\n%d aisle num\n%d products num" % (label) for label inzip(temp2.index, temp2.aisle_department, temp2.products_department)]
fig = plt.figure(figsize=(12, 10))
ax = fig.add_subplot(111, aspect="equal")
ax = squarify.plot(temp2.aisle_department, color=colors, label=labels, ax=ax, alpha=.7)

绘制结果

2.设置xy轴的属性

ax.set_xticks([])
ax.set_yticks([])

3.添加图表标题

fig.suptitle("How are aisles organized within departments", fontsize=20 )

4.添加数据标签

img = plt.imshow([temp2.products_department], cmap=cmap)
img.set_visible(False)
fig.colorbar(img, orientation="vertical", shrink=.96)
fig.text(.76, .9, "numbers of products", fontsize=14)

这样我们的板块层级图就绘制完毕了

附录:总代码

import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import matplotlib.pyplot as plt
import seaborn as sns
import matplotlib
import squarify
color = sns.color_palette()
pd.options.mode.chained_assignment = None # default='warn'
products_df = pd.read_csv('products.csv')
aisles_df = pd.read_csv('aisles.csv')
departments_df = pd.read_csv('departments.csv')
order_products_prior_df = pd.merge(products_df, aisles_df, on='aisle_id', how='left')
order_products_prior_df = pd.merge(order_products_prior_df, departments_df, on='department_id', how='left')
order_products_prior_df.head()
temp = order_products_prior_df[['product_name', 'aisle', 'department']]
temp = pd.concat([order_products_prior_df.groupby('department')['product_name'].nunique().rename('products_department'),order_products_prior_df.groupby('department')['aisle'].nunique().rename('aisle_department')
], axis=1).reset_index()
temp = temp.set_index('department')
temp2 = temp.sort_values(by="aisle_department", ascending=False)
print(temp)
print(temp2)
x = 0
y = 0
width = 100
height = 100
cmap = matplotlib.cm.viridis
mini, maxi = temp2.products_department.min(), temp2.products_department.max()
norm = matplotlib.colors.Normalize(vmin=mini, vmax=maxi)
colors = [cmap(norm(value)) for value in temp2.products_department]
colors[1] = "#FBFCFE"
labels = ["%s\n%d aisle num\n%d products num" % (label) for label inzip(temp2.index, temp2.aisle_department, temp2.products_department)]
fig = plt.figure(figsize=(12, 10))
ax = fig.add_subplot(111, aspect="equal")
ax = squarify.plot(temp2.aisle_department, color=colors, label=labels, ax=ax, alpha=.7)
fig.suptitle("How are aisles organized within departments", fontsize=20 )
ax.set_xticks([])
ax.set_yticks([])
img = plt.imshow([temp2.products_department], cmap=cmap)
img.set_visible(False)
fig.colorbar(img, orientation="vertical", shrink=.96)
fig.text(.76, .9, "numbers of products", fontsize=14)
plt.show()

http://www.wangmingla.cn/news/92868.html

相关文章:

  • 专门做优选的网站seo网站怎么优化
  • 做兼职的国外网站内蒙古最新消息
  • 深圳网站建设合同小说排行榜百度搜索风云榜
  • 地方资讯网站源码百度指数行业排行
  • 黄山做网站公司站长工具高清吗
  • 做网站设计的公司网络营销推广活动有哪些
  • wordpress中文下载站除了百度指数还有哪些指数
  • dw怎么用div css做网站6百度小说排行榜
  • 响应式网站移动端排名东莞网站seo公司
  • 免费营销网站制作四川seo推广方案
  • 上海的建设网站g3云推广
  • 怎么建设网站怎么样如何写软文赚钱
  • 电子商务网站建设与综合实践承德网络推广
  • 做网站建设公司赚钱吗定制企业网站建设制作
  • wordpress 网站统计插件下载想要导航页面推广app
  • 企业网站多大空间无锡百度信息流
  • 网站logo代码站长工具seo综合查询分析
  • 宁津网站建设宁波江北区网站推广联系方式
  • 用微魔方做的网站一定要加千锋教育学费多少
  • 怎么进behance设计网站泰州网站整站优化
  • 一定要知道的网站二级域名注册平台
  • 网站建设实训课亚马逊关键词排名查询工具
  • 展示型网站建设价格南京百度提升优化
  • 网站 宽屏窄屏自适应下载安装百度一下
  • 怎么做网站才能不让警察定位到自己宁波seo优化项目
  • 建网站盈利的几种方式谷歌搜索引擎香港入口
  • 做网站下载那个数据库好网络推广公司是干什么
  • 北京网站开发互联网推广方式有哪些
  • 外贸批发网站建设推广普通话手抄报内容大全
  • 北京做网站哪家专业天津网站推广