当前位置: 首页 > news >正文

外包公司做网站多少河北百度推广电话

外包公司做网站多少,河北百度推广电话,做公众号要不要有自己的网站,湖南建设长沙网站建设价格本节是特征提取之线检测的下篇,讨论基于Hough变换的线检测方法。首先简要介绍Hough变换的基本原理,然后重点介绍Skimage中含有的基于Hough变换的直线和圆形检测到实现。 目录 10.4 Hough变换 10.4.1 原理 10.4.2 实现 10.4 Hough变换 Hough变换&…

本节是特征提取之线检测的下篇,讨论基于Hough变换的线检测方法。首先简要介绍Hough变换的基本原理,然后重点介绍Skimage中含有的基于Hough变换的直线和圆形检测到实现。

目录

10.4 Hough变换

10.4.1 原理

10.4.2 实现

10.4 Hough变换

Hough变换(霍夫变换)是一种在图像处理和计算机视觉中广泛使用的技术,是由Paul Hough在1962年提出。

Hough变换的一个主要优点是它对噪声和曲线间断的鲁棒性。它不仅限于检测直线,还可以用于检测圆、椭圆、三角形等多种形状。此外,Hough变换也广泛应用于计算机视觉的多个领域,如边缘检测、特征提取、模式识别等多个领域。

10.4.1 原理

Hough变换的基本原理是通过在参数空间中进行累加统计来检测图像中的基本形状,其核心思想是将图像空间中的曲线或直线变换到参数空间中,通过检测参数空间中的极值点来确定图像中曲线的描述参数,从而提取出规则的曲线。

有关原理的详细介绍,可参考相关的文献,再次不再赘述。我们重点介绍基于Skimage的Hough变换的实现。

10.4.2 实现

在Skimage中,提供了5个与Hough变换有关的函数,分别是:

  • skimage.transform.hough_line:进行直线Hough变换.
  • skimage.transform.hough_line_peaks:返回直线Hough变换的峰值.
  • skimage.transform.hough_circle:进行圆Hough变换
  • skimage.transform.hough_circle_peaks:返回圆形Hough变换的峰值.
  • skimage.transform.hough_ellipse:进行椭圆Hough变换.

(1)直线检测

使用skimage.transform.hough_line()和skimage.transform.hough_line_peaks()实现直线检测:

skimage.transform.hough_line(image, theta).
skimage.transform.hough_line_peaks(hspace, angles, dists, min_distance, min_angle, threshold, num_peaks)

部分参数说明

  • image:输入图像。
  • theta:Angles at which to compute the transform, in radians. Defaults to a vector of 180 angles evenly spaced in the range [-pi/2, pi/2).。
  • hspace:Hough transform accumulator。Angles at which the transform is computed, in radians.
  • angles:Angles at which the transform is computed, in radians。
  • dists:输入图像。
  • min_distance:输入图像。
  • min_angle:输入图像。
  • num_peaks:输入图像。
  • hspace:输入图像。

返回值

  • hspace:ndarray of uint64, shape (P, Q),Hough transform accumulator.
  • angles:Angles at which the transform is computed, in radians。

以下是官方提供的一个直线检测的实例:

import numpy as npfrom skimage.transform import hough_line, hough_line_peaks
from skimage.feature import canny
from skimage.draw import line as draw_line
from skimage import dataimport matplotlib.pyplot as plt
from matplotlib import cm# Constructing test image
image = np.zeros((200, 200))
idx = np.arange(25, 175)
image[idx, idx] = 255
image[draw_line(45, 25, 25, 175)] = 255
image[draw_line(25, 135, 175, 155)] = 255# Classic straight-line Hough transform
# Set a precision of 0.5 degree.
tested_angles = np.linspace(-np.pi / 2, np.pi / 2, 360, endpoint=False)
h, theta, d = hough_line(image, theta=tested_angles)# Generating figure 1
fig, axes = plt.subplots(1, 3, figsize=(15, 6))
ax = axes.ravel()ax[0].imshow(image, cmap=cm.gray)
ax[0].set_title('Input image')
ax[0].set_axis_off()angle_step = 0.5 * np.diff(theta).mean()
d_step = 0.5 * np.diff(d).mean()
bounds = [np.rad2deg(theta[0] - angle_step),np.rad2deg(theta[-1] + angle_step),d[-1] + d_step,d[0] - d_step,
]
ax[1].imshow(np.log(1 + h), extent=bounds, cmap=cm.gray, aspect=1 / 1.5)
ax[1].set_title('Hough transform')
ax[1].set_xlabel('Angles (degrees)')
ax[1].set_ylabel('Distance (pixels)')
ax[1].axis('image')ax[2].imshow(image, cmap=cm.gray)
ax[2].set_ylim((image.shape[0], 0))
ax[2].set_axis_off()
ax[2].set_title('Detected lines')for _, angle, dist in zip(*hough_line_peaks(h, theta, d)):(x0, y0) = dist * np.array([np.cos(angle), np.sin(angle)])ax[2].axline((x0, y0), slope=np.tan(angle + np.pi / 2))plt.tight_layout()
plt.show()

以下是处理结果示例:

(2)圆形检测

使用skimage.transform.hough_circle()和skimage.transform.hough_circle_peaks()检测圆形:

skimage.transform.hough_circle(image, radius, normalize, full_output)
skimage.transform.hough_circle_peaks(hspaces, radii, min_xdistance, min_ydistance, threshold, num_peaks, total_num_peaks, normalize)

以下是官方提供的一个圆形检测的实例:

import numpy as np
import matplotlib.pyplot as pltfrom skimage import data, color
from skimage.transform import hough_circle, hough_circle_peaks
from skimage.feature import canny
from skimage.draw import circle_perimeter
from skimage.util import img_as_ubyte# Load picture and detect edges
image = img_as_ubyte(data.coins()[160:230, 70:270])
edges = canny(image, sigma=3, low_threshold=10, high_threshold=50)# Detect two radii
hough_radii = np.arange(20, 35, 2)
hough_res = hough_circle(edges, hough_radii)# Select the most prominent 3 circles
accums, cx, cy, radii = hough_circle_peaks(hough_res, hough_radii, total_num_peaks=3)# Draw them
fig, ax = plt.subplots(ncols=1, nrows=1, figsize=(10, 4))
image = color.gray2rgb(image)
for center_y, center_x, radius in zip(cy, cx, radii):circy, circx = circle_perimeter(center_y, center_x, radius, shape=image.shape)image[circy, circx] = (220, 20, 20)ax.imshow(image, cmap=plt.cm.gray)
plt.show()

以下是处理结果示例:

(3)椭圆检测

使用skimage.transform.hough_ellipse()检测椭圆形:

skimage.transform.hough_ellipse(image, threshold, accuracy, min_size, max_size)

以下是官方提供的一个椭圆检测的实例:

import matplotlib.pyplot as pltfrom skimage import data, color, img_as_ubyte
from skimage.feature import canny
from skimage.transform import hough_ellipse
from skimage.draw import ellipse_perimeter# Load picture, convert to grayscale and detect edges
image_rgb = data.coffee()[0:220, 160:420]
image_gray = color.rgb2gray(image_rgb)
edges = canny(image_gray, sigma=2.0, low_threshold=0.55, high_threshold=0.8)# Perform a Hough Transform
result = hough_ellipse(edges, accuracy=20, threshold=250, min_size=100, max_size=120)
result.sort(order='accumulator')# Estimated parameters for the ellipse
best = list(result[-1])
yc, xc, a, b = (int(round(x)) for x in best[1:5])
orientation = best[5]# Draw the ellipse on the original image
cy, cx = ellipse_perimeter(yc, xc, a, b, orientation)
image_rgb[cy, cx] = (0, 0, 255)
# Draw the edge (white) and the resulting ellipse (red)
edges = color.gray2rgb(img_as_ubyte(edges))
edges[cy, cx] = (250, 0, 0)fig2, (ax1, ax2) = plt.subplots(ncols=2, nrows=1, figsize=(8, 4), sharex=True, sharey=True
)ax1.set_title('Original picture')
ax1.imshow(image_rgb)ax2.set_title('Edge (white) and result (red)')
ax2.imshow(edges)plt.show()

以下是处理结果示例:

参考文献:

  1. Duda, R. O. and P. E. Hart, “Use of the Hough Transformation to Detect Lines and Curves in Pictures,” Comm. ACM, Vol. 15, pp. 11-15 (January, 1972)
  2. C. Galamhos, J. Matas and J. Kittler,”Progressive probabilistic Hough transform for line detection”, in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1999.

(未完待续)

http://www.wangmingla.cn/news/42620.html

相关文章:

  • 请人做网站需要什么百度seo排名点击器app
  • 公司设计网站需要包含什么资料如何进行网络推广
  • 做谱的网站网页设计制作网站模板
  • 怎么查询网站ftp地址武汉大学人民医院精神科
  • 网站建设公司后端招聘要求怎么做网站宣传
  • 网站建设要什么知识关键词seo深圳
  • 网站建设应注意什么问题win10优化大师免费版
  • 网络工程师网课小时seo百度关键词点击器
  • 网站后台登录怎么做的温岭网络推广
  • 自己怎么1做网站媒体135网站
  • 响应式制作网站建设免费个人网站申请
  • 新闻网站做服务西安百度竞价托管代运营
  • 地产项目网站免费网站alexa排名查询
  • 长沙建设企业网站关键词优化系统
  • wordpress 伪静态 主题失效徐州网页关键词优化
  • 微信小程序商城源代码慈溪seo
  • 韩国男女真人做视频网站seo搜索优化培训
  • 个人网站建设方案书框架栏目最新国际新闻 大事件
  • 公司做网站还是做阿里好呢baidu com百度一下
  • 经营性网站备案须知自己做网站建设
  • b2b网站计划书seo快速排名网站优化
  • 企业网上年检在网站怎么做网络营销策划书的范文
  • 东昌网站建设公司关于友情链接说法正确的是
  • 手机网站静态模板百度云搜索
  • 怎样会展网站建设湖南关键词优化首选
  • 企业品牌网站建设注意事项关键词优化的五个步骤
  • 网站内外链怎么做百度搜索引擎营销
  • 做网站建设的上市公司有哪些老铁外链工具
  • 关于微网站策划ppt怎么做媒体:北京不再公布疫情数据
  • 有哪些做画册的网站百度关键词优化的意思