当前位置: 首页 > news >正文

北京建设电工证查询网站营销策略范文

北京建设电工证查询网站,营销策略范文,和田做网站的联系电话,php做外贸网站好吗高通滤波器是一种可以通过去除图像低频信息来增强高频信息的滤波器。在图像处理中,高通滤波器常常用于去除模糊或平滑效果,以及增强边缘或细节。在本篇回答中,我们将使用Python和OpenCV实现高通滤波器。 Step 1:加载图像并进行傅…

在这里插入图片描述
高通滤波器是一种可以通过去除图像低频信息来增强高频信息的滤波器。在图像处理中,高通滤波器常常用于去除模糊或平滑效果,以及增强边缘或细节。在本篇回答中,我们将使用Python和OpenCV实现高通滤波器。

Step 1:加载图像并进行傅立叶变换

首先,我们需要加载图像并将其转换为灰度图像。然后,我们使用numpy的fft2函数进行二维傅立叶变换,并使用numpy的fftshift函数将频谱中心移到图像中心。最后,我们使用numpy的log函数计算幅度谱的对数值,并使用opencv的normalize函数将其缩放到0到255之间的整数范围内。

以下是完整的Python代码:

import numpy as np
import cv2
import matplotlib.pyplot as plt# 加载图像并将其转换为灰度图像
img = cv2.imread('image.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# 进行二维傅立叶变换
dft = np.fft.fft2(gray)
dft_shift = np.fft.fftshift(dft)# 计算幅度谱并进行对数变换
magnitude_spectrum = 20 * np.log(np.abs(dft_shift))# 将幅度谱缩放到0到255的整数范围内
magnitude_spectrum = cv2.normalize(magnitude_spectrum, None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U)

解释:

  • Step 1.1:我们使用cv2.imread函数加载图像,并使用cv2.cvtColor函数将其转换为灰度图像。
  • Step 1.2:我们使用np.fft.fft2函数对灰度图像进行二维傅立叶变换。
  • Step 1.3:我们使用np.fft.fftshift函数将频谱中心移到图像中心。
  • Step 1.4:我们使用np.abs函数计算频谱的幅度,并使用np.log函数进行对数变换。
  • Step 1.5:我们使用cv2.normalize函数将幅度谱缩放到0到255之间的整数范围内。

Step 2:设计高通滤波器并应用

在本例中,我们将使用巴特沃斯高通滤波器来过滤频谱。巴特沃斯高通滤波器可以被描述为一个阶数和半径的函数,我们需要选择这些参数来调整滤波器的性能。阶数越高,滤波器的陡峭程度就越高,但会导致图像失真。半径越小,滤波器去除的低频信息就越多。

我们将使用cv2.getOptimalDFTSize函数获取最佳的离散傅里叶变换尺寸,以便在后续计算中避免频谱的失真。接下来,我们将使用cv2.filter2D函数将高通滤波器应用于频谱图像,并将其保存为变量filtered_spectrum

以下是完整的Python代码:

# 设计高通滤波器并应用
rows, cols = gray.shape
crow, ccol = rows // 2, cols // 2
R = 60
n = 2
D_0 = R / ((rows ** 2 + cols ** 2) ** 0.5)# 创建巴特沃斯高通滤波器
butterworth_highpass = np.zeros((rows, cols), dtype=np.float32)
for i in range(rows):for j in range(cols):distance = ((i - crow) ** 2 + (j - ccol) ** 2) ** 0.5butterworth_highpass[i, j] = 1 / (1 + (distance / D_0) ** (2 * n))# 将高通滤波器应用于频谱图像
filtered_spectrum = butterworth_highpass * dft_shift
filtered_spectrum = np.fft.ifftshift(filtered_spectrum)

解释:

  • Step 2.1:我们获取图像的行和列数,并计算其中心坐标。
  • Step 2.2:我们选择半径R和阶数n作为巴特沃斯高通滤波器的参数,并计算截止频率D_0
  • Step 2.3:我们使用两个嵌套的for循环来创建一个与输入图像大小相同的数组butterworth_highpass,并为每个像素计算对应的高通滤波器值。
  • Step 2.4:我们使用np.fft.ifftshift函数将频谱中心移回原来的位置。

Step 3:进行傅立叶逆变换并显示结果

最后一步是将处理后的频谱图像进行逆变换,并将结果保存为变量filtered_image。我们使用opencv的normalize函数将结果缩放到0到255之间的整数范围内,并使用matplotlib的imshow函数显示结果。

# 进行傅立叶逆变换并显示结果
filtered_image = cv2.idft(filtered_spectrum)
filtered_image = cv2.magnitude(filtered_image[:, :, 0], filtered_image[:, :, 1])
filtered_image = cv2.normalize(filtered_image, None, 0, 255, cv2.NORM_MINMAX, cv2.CV_8U)plt.imshow(filtered_image, cmap='gray')
plt.title('High Pass Filtered Image')
plt.show()

解释:

  • Step 3.1:我们使用cv2.idft函数将经过高通滤波器处理的频谱进行傅里叶逆变换,以便将其转换回图像域。
  • Step 3.2:我们使用cv2.magnitude函数计算逆变换结果的幅值,并保存在变量filtered_image中。
  • Step 3.3:我们使用cv2.normalize函数将结果缩放到0到255之间的整数范围内,并将其转换为8位无符号整数。
  • Step 3.4:我们使用matplotlib.pyplot.imshow函数显示结果,并添加一个标题。

完整的Python代码如下:

import cv2
import numpy as np
import matplotlib.pyplot as plt# 读取图像并转换为灰度图像
img = cv2.imread('input.jpg', cv2.IMREAD_GRAYSCALE)# 进行离散傅里叶变换
dft = cv2.dft(np.float32(img), flags=cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)# 设计高通滤波器并应用
rows, cols = img.shape
crow, ccol = rows // 2, cols // 2
R = 60
n = 2
D_0 = R / ((rows ** 2 + cols ** 2) ** 0.5)# 创建巴特沃斯高通滤波器
butterworth_highpass = np.zeros((rows, cols), dtype=np.float32)
for i in range(rows):for j in range(cols):distance = ((i - crow) ** 2 + (j - ccol) ** 2) ** 0.5butterworth_highpass[i, j] = 1 / (1 + (distance / D_0) ** (2 * n))# 将高通滤波器应用于频谱图像
filtered_spectrum = butterworth_highpass * dft_shift
filtered_spectrum = np.fft.ifftshift(filtered_spectrum)# 进行傅立叶逆变换并显示结果
filtered_image = cv2.idft(filtered_spectrum)
filtered_image = cv2.magnitude(filtered_image[:, :, 0], filtered_image[:, :, 1])
filtered_image = cv2.normalize(filtered_image, None, 0, 255, cv2.NORM_MINMAX, cv2.CV_8U)plt.imshow(filtered_image, cmap='gray')
plt.title('High Pass Filtered Image')
plt.show()

这个程序将在窗口中显示过滤后的图像,并保存为当前目录中的文件。

http://www.wangmingla.cn/news/129790.html

相关文章:

  • wordpress主题百度云seo的作用
  • 南京自助建站生成关键词的软件免费
  • 做门户网站需要什么企业网站建设目标
  • 河北搜恒不给做网站培训机构管理系统
  • 旅游业网站建设方案特点如何做电商赚钱
  • 学院网站建设 需求分析不受限制的万能浏览器
  • 如何判断一个网站的关键词是否难做seo实战培训视频
  • .net网站建设实例什么是网站seo
  • 好看手机网站推荐百度一下百度搜索入口
  • 天津做网站找津坤科技专业漯河网站seo
  • 网站模板内容页在哪佛山网站建设工作
  • 做服装必须看的十大网站电商数据分析
  • 去国外做外卖网站好如何注册网站怎么注册
  • 中国外贸人才网朔州网站seo
  • 推广网站的作用最新seo视频教程
  • 长春财经学院怎么样好不好东莞优化网站制作
  • 自己做装修网站免费的网页入口
  • wordpress 页码seo研究中心vip课程
  • 做网站好平台化百度地图疫情实时动态
  • 怎么在浏览器上面建网站搜多多搜索引擎入口
  • 怎么做网站子页企业产品网络推广
  • 可以做线路板网站的背景图天津网站建设技术外包
  • 网站加视频播放设计怎么做的徐州seo排名公司
  • 怎么自己购买域名 建设网站好用的搜索引擎有哪些
  • 安阳招聘网google搜索排名优化
  • 在网站里文本链接怎么做花生壳免费域名注册
  • 做诈骗网站吗新媒体代运营
  • 阜阳做网站多少钱关键词优化排名第一
  • 建阳建设局网站品牌广告语经典100条
  • 个人备案网站可以做产品推广百度做免费推广的步骤