当前位置: 首页 > news >正文

做网站的客户哪里找如何成为app推广代理

做网站的客户哪里找,如何成为app推广代理,什么网站能看男女做暧,域名不定更换 请及时收藏n4v4定义了一套与时间特征相关的类和函数,旨在从时间序列数据中提取有用的时间特征,以支持各种时间序列分析和预测任务 from typing import Listimport numpy as np import pandas as pd from pandas.tseries import offsets from pandas.tseries.frequenc…

定义了一套与时间特征相关的类和函数,旨在从时间序列数据中提取有用的时间特征,以支持各种时间序列分析和预测任务 

from typing import Listimport numpy as np
import pandas as pd
from pandas.tseries import offsets
from pandas.tseries.frequencies import to_offset

1 TimeFeature 类

  • 这是一个基础类,其他与时间特征相关的类都继承自它。
  • 它提供了一个基本框架,但没有实现具体的功能。
class TimeFeature:def __init__(self):passdef __call__(self, index: pd.DatetimeIndex) -> np.ndarray:passdef __repr__(self):return self.__class__.__name__ + "()"

 2 时间特征类

SecondOfMinuteMinuteOfHourHourOfDayDayOfWeekDayOfMonthDayOfYearMonthOfYearWeekOfYear:这些类都继承自TimeFeature,每个类都实现了一个特定的时间特征提取方法。例如,HourOfDay类提取一天中的小时数并进行规范化处理,使得值在[-0.5, 0.5]之间。

class SecondOfMinute(TimeFeature):"""Minute of hour encoded as value between [-0.5, 0.5]"""def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:return index.second / 59.0 - 0.5class MinuteOfHour(TimeFeature):"""Minute of hour encoded as value between [-0.5, 0.5]"""def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:return index.minute / 59.0 - 0.5class HourOfDay(TimeFeature):"""Hour of day encoded as value between [-0.5, 0.5]"""def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:return index.hour / 23.0 - 0.5class DayOfWeek(TimeFeature):"""Hour of day encoded as value between [-0.5, 0.5]"""def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:return index.dayofweek / 6.0 - 0.5class DayOfMonth(TimeFeature):"""Day of month encoded as value between [-0.5, 0.5]"""def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:return (index.day - 1) / 30.0 - 0.5class DayOfYear(TimeFeature):"""Day of year encoded as value between [-0.5, 0.5]"""def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:return (index.dayofyear - 1) / 365.0 - 0.5class MonthOfYear(TimeFeature):"""Month of year encoded as value between [-0.5, 0.5]"""def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:return (index.month - 1) / 11.0 - 0.5class WeekOfYear(TimeFeature):"""Week of year encoded as value between [-0.5, 0.5]"""def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:return (index.week - 1) / 52.0 - 0.5

3 time_features_from_frwquency_str

def time_features_from_frequency_str(freq_str: str) -> List[TimeFeature]:"""根据给定的频率字符串(如"12H", "5min", "1D"等)返回一组适当的时间特征类实例"""features_by_offsets = {offsets.YearEnd: [],offsets.QuarterEnd: [MonthOfYear],offsets.MonthEnd: [MonthOfYear],offsets.Week: [DayOfMonth, WeekOfYear],offsets.Day: [DayOfWeek, DayOfMonth, DayOfYear],offsets.BusinessDay: [DayOfWeek, DayOfMonth, DayOfYear],offsets.Hour: [HourOfDay, DayOfWeek, DayOfMonth, DayOfYear],offsets.Minute: [MinuteOfHour,HourOfDay,DayOfWeek,DayOfMonth,DayOfYear,],offsets.Second: [SecondOfMinute,MinuteOfHour,HourOfDay,DayOfWeek,DayOfMonth,DayOfYear,],}'''特征映射字典 features_by_offsets:这个字典将pandas的时间偏移类(如YearEnd、QuarterEnd、MonthEnd等)映射到对应的时间特征类列表。例如,对于每月的数据(MonthEnd),它映射到MonthOfYear类;对于每小时的数据(Hour),它映射到HourOfDay、DayOfWeek、DayOfMonth和DayOfYear类。'''offset = to_offset(freq_str)#使用pandas的to_offset函数将频率字符串(如"12H")转换为相应的pandas时间偏移对象。for offset_type, feature_classes in features_by_offsets.items():if isinstance(offset, offset_type):return [cls() for cls in feature_classes]'''遍历映射字典,检查提供的偏移对象是否属于字典中的某个偏移类型。如果找到匹配,为每个相关的特征类创建一个实例,并将这些实例作为列表返回。'''supported_freq_msg = f"""Unsupported frequency {freq_str}The following frequencies are supported:Y   - yearlyalias: AM   - monthlyW   - weeklyD   - dailyB   - business daysH   - hourlyT   - minutelyalias: minS   - secondly"""raise RuntimeError(supported_freq_msg)

4 time_features

'''
从日期数据中提取有用的时间特征
'''
def time_features(dates, timeenc=0, freq='h'):"""> `time_features` takes in a `dates` dataframe with a 'dates' column and extracts the date down to `freq` where freq can be any of the following if `timeenc` is 0:> * m - [month]> * w - [month]> * d - [month, day, weekday]> * b - [month, day, weekday]> * h - [month, day, weekday, hour]> * t - [month, day, weekday, hour, *minute]>> If `timeenc` is 1, a similar, but different list of `freq` values are supported (all encoded between [-0.5 and 0.5]):> * Q - [month]> * M - [month]> * W - [Day of month, week of year]> * D - [Day of week, day of month, day of year]> * B - [Day of week, day of month, day of year]> * H - [Hour of day, day of week, day of month, day of year]> * T - [Minute of hour*, hour of day, day of week, day of month, day of year]> * S - [Second of minute, minute of hour, hour of day, day of week, day of month, day of year]*minute returns a number from 0-3 corresponding to the 15 minute period it falls into."""if timeenc==0:dates['month'] = dates.date.apply(lambda row:row.month,1)dates['day'] = dates.date.apply(lambda row:row.day,1)dates['weekday'] = dates.date.apply(lambda row:row.weekday(),1)dates['hour'] = dates.date.apply(lambda row:row.hour,1)dates['minute'] = dates.date.apply(lambda row:row.minute,1)dates['minute'] = dates.minute.map(lambda x:x//15)freq_map = {'y':[],'m':['month'],'w':['month'],'d':['month','day','weekday'],'b':['month','day','weekday'],'h':['month','day','weekday','hour'],'t':['month','day','weekday','hour','minute'],}return dates[freq_map[freq.lower()]].values'''此模式下,函数直接从日期中提取特定的时间特征,如月份、日期、星期几、小时和分钟。freq参数指定要提取的时间特征的精度。例如,如果freq为'd',则提取月、日和星期几。对于分钟,它被转换为一个从0到3的数字,表示15分钟的时间段。'''if timeenc==1:dates = pd.to_datetime(dates.date.values)return np.vstack([feat(dates) for feat in time_features_from_frequency_str(freq)]).transpose(1,0)'''此模式下,函数使用time_features_from_frequency_str函数来获取一组特征提取器,并应用它们来转换时间数据。这些特征提取器提取的特征被编码在[-0.5, 0.5]的范围内,以提供规范化的时间特征。
freq参数在这种情况下也指定了提取的时间特征的类型和精度。'''

http://www.wangmingla.cn/news/47234.html

相关文章:

  • wordpress文章编辑器海口网站关键词优化
  • 营销型网站设计稿seo黑帽培训骗局
  • 浦东新区中国建设银行官网站网络营销工具包括
  • 专业的手机网站建设seo在线外链
  • 手机网站秒杀模板seowhy论坛
  • jsp如何做动态网站千锋教育培训怎么样
  • 网站的查询系统怎么做苏州手机关键词优化
  • 网站实名认证 备案淘宝seo优化怎么做
  • 淮安建设局网站中山百度seo排名公司
  • 中山企业集团网站建设爱站网ip反查域名
  • b2c平台网址滕州网站建设优化
  • 网站建设的关键词百度官网地址
  • 凡科网上商城seo赚钱暴利
  • 长沙网站制作案例长沙网站快速排名提升
  • 静态网站怎么样苏州排名搜索优化
  • 用空间做网站如何做好安全网络营销方案怎么写
  • 贵阳培训网站建设网络营销推广方案前言
  • 镇江网站建设远航科技必应bing国内版
  • 网站设计师发展前景南京seo关键词排名
  • 有哪些做简历的网站广告主广告商对接平台
  • 用avada做网站首页360优化大师旧版本
  • 宿迁网站建设费用百度上看了不健康的内容犯法吗
  • 北京网站制作net2006实时热点新闻事件
  • iis wordpress固定链接404上海seo公司
  • 网站建设活动怎样建立自己网站
  • 杨凌做网站世界羽联巡回赛总决赛
  • 自己造网站友情连接出售
  • 聊城网站建设哪家便宜江苏百度推广代理商
  • 心理咨询网站开发营销最好的方法
  • 购物网站备案费用中国培训网官网