当前位置: 首页 > news >正文

重庆做企业年报在哪个网站做sem是什么检测分析

重庆做企业年报在哪个网站做,sem是什么检测分析,百度引擎入口官网,wordpress使用七牛云加速这里写目录标题 生成数据函数定义数据集定义loader加载数据定义神经网络模型测试输出是否为2个输入数据,输出结果 训练模型函数计算正确率 训练数据并保存模型测试模型准备数据加载模型预测对比结果 生成数据函数 import randomdef get_rectangle():widthrandom.ra…

这里写目录标题

  • 生成数据函数
  • 定义数据集
  • 定义loader加载数据
  • 定义神经网络模型
    • 测试输出是否为2个
    • 输入数据,输出结果
  • 训练模型函数
    • 计算正确率
  • 训练数据并保存模型
  • 测试模型
    • 准备数据
    • 加载模型预测
    • 对比结果

生成数据函数

import random
def get_rectangle():width=random.random()height=random.random()# 如果width大于height就是1,否则就是0fat=int(width>=height)return width,height,fatget_rectangle()
(0.19267437580138802, 0.645061020860627, 0)
fat=int(0.8>=0.9)
fat
0

定义数据集

import torch
class Dataset(torch.utils.data.Dataset):def __init__(self):passdef __len__(self):return 1000def __getitem__(self,i):width,height,fat=get_rectangle()# 这里注意width和height列表形式再转为tensor,另外是floattensorx=torch.FloatTensor([width,height])y=fatreturn x,y
dataset=Dataset()
# 这里没执行一次都要变,有什么意义?
len(dataset),dataset[999]
(1000, (tensor([0.4756, 0.1713]), 1))

定义loader加载数据

# 定义了数据集,然后使用loader去加载,需要记住batch_size,shuffle,drop_last这个三个常用的
loader=torch.utils.data.DataLoader(dataset=dataset,batch_size=9,shuffle=True,drop_last=True)# 加载完了以后,就可以使用next去遍历了
len(loader),next(iter(loader))
(111,[tensor([[0.1897, 0.6766],[0.2460, 0.2725],[0.5871, 0.7739],[0.3035, 0.9607],[0.7006, 0.7421],[0.4279, 0.9501],[0.6750, 0.1704],[0.5777, 0.1154],[0.5512, 0.3933]]),tensor([0, 0, 0, 0, 0, 0, 1, 1, 1])])
# 输出结果:
# (111,
#  [tensor([[0.3577, 0.3401],
#           [0.0156, 0.7550],
#           [0.0435, 0.4984],
#           [0.1329, 0.5488],
#           [0.4330, 0.5362],
#           [0.1070, 0.8500],
#           [0.1073, 0.2496],
#           [0.1733, 0.0226],
#           [0.6790, 0.2119]]),
#   tensor([1, 0, 0, 0, 0, 0, 0, 1, 1])])  这里是torch自动将y组合成了一个tensor

定义神经网络模型

class Model(torch.nn.Module):def __init__(self):super().__init__()# 定义神经网络结构self.fb=torch.nn.Sequential(# 第一层输入两个,输出32个torch.nn.Linear(in_features=2,out_features=32),# 激活层的意思是小于0的数字变为0,即负数归零操作torch.nn.ReLU(),# 第二层,输入是32个,输出也是32个torch.nn.Linear(in_features=32,out_features=32),# 激活torch.nn.ReLU(),# 第三次,输入32个,输出2个torch.nn.Linear(in_features=32,out_features=2),# 激活,生成的两个数字相加等于1torch.nn.Softmax(dim=1))# 定义网络计算过程def forward(self,x):return self.fb(x)model=Model()

测试输出是否为2个

# 测试 8行2列的数据,让模型测试,看是否最后输出是否也是8行一列?model(torch.rand(8,2)).shape
torch.Size([8, 2])

输入数据,输出结果

model(torch.tensor([[0.3577, 0.3401]]))
tensor([[0.5228, 0.4772]], grad_fn=<SoftmaxBackward>)

训练模型函数

def train():#定义优化器,le-4表示0.0004,10的负四次方opitimizer=torch.optim.Adam(model.parameters(),lr=1e-4)#定义损失函数 ,一般回归使用mseloss,分类使用celossloss_fn=torch.nn.CrossEntropyLoss()#然后trainmodel.train()# 全量数据遍历100轮for epoch in range(100):# 遍历loader的数据,循环一次取9条数据,这里注意unpack时,x就是【width,height】for i,(x,y) in enumerate(loader):out=model(x)# 计算损失loss=loss_fn(out,y)# 计算损失的梯度loss.backward()# 优化参数opitimizer.step()# 梯度清零opitimizer.zero_grad()# 第二十轮的时候打印一下数据if epoch % 20 ==0:# 正确率# out.argmax(dim=1) 表示哪个值大就说明偏移哪一类,dim=1暂时可以看做是固定的# (out.argmax(dim=1)==y).sum() 表示的true的个数acc=(out.argmax(dim=1)==y).sum().item()/len(y)print(epoch,loss.item(),acc)torch.save(model,"4.model")

计算正确率

执行的命令:

print(out,“======”,y,“+++++”,(out.argmax(dim=1)==y).sum().item())

print(out.argmax(dim=1),“------------”,(out.argmax(dim=1)==y),“~~~~~~~~~~~”,(out.argmax(dim=1)==y).sum())

输出的结果:

tensor([[9.9999e-01, 1.4671e-05],

    [4.6179e-14, 1.0000e+00],        [3.2289e-02, 9.6771e-01],        [1.1237e-22, 1.0000e+00],[9.9993e-01, 7.0015e-05],[8.6740e-02, 9.1326e-01],[1.1458e-18, 1.0000e+00],[5.2558e-01, 4.7442e-01],[9.7923e-01, 2.0772e-02]],         grad_fn=<SoftmaxBackward>) ====== tensor([0, 1, 1, 1, 0, 1, 1, 1, 0]) +++++ 8

tensor([0, 1, 1, 1, 0, 1, 1, 0, 0]) ------------ tensor([ True, True, True, True, True, True, True, False, True]) ~~~~~~~~~~~ tensor(8)

解释:

out.argmax(dim=1) 表示哪个值大就说明偏移哪一类,dim=1暂时可以看做是固定的

(out.argmax(dim=1)==y).sum() 表示的true的个数

 a = torch.tensor([[1,2,3],[4,7,6]])d = a.argmax(dim=1)
print(d)
tensor([2, 1])

训练数据并保存模型

train()
80 0.3329530954360962 1.0
80 0.31511250138282776 1.0
80 0.33394935727119446 1.0
80 0.3242819309234619 1.0
80 0.3188716471195221 1.0
80 0.3405844569206238 1.0
80 0.32696405053138733 1.0
80 0.3540787696838379 1.0
80 0.3390745222568512 1.0
80 0.3645476996898651 0.8888888888888888
80 0.3371085822582245 1.0
80 0.31789034605026245 1.0
80 0.31553390622138977 1.0
80 0.3162603974342346 1.0
80 0.35249051451683044 1.0
80 0.3582523465156555 1.0
80 0.3162645995616913 1.0
80 0.37988030910491943 1.0
80 0.34384390711784363 1.0
80 0.31773826479911804 1.0
80 0.3145104646682739 1.0
80 0.31753242015838623 1.0
80 0.3222736120223999 1.0
80 0.38612237572669983 1.0
80 0.35490038990974426 1.0
80 0.34469687938690186 1.0
80 0.34534531831741333 1.0
80 0.31800928711891174 1.0
80 0.34892910718917847 1.0
80 0.33424195647239685 1.0
80 0.37350085377693176 1.0
80 0.3298128843307495 1.0
80 0.3715909719467163 1.0
80 0.3507140874862671 1.0
80 0.33337005972862244 1.0
80 0.3134789764881134 1.0
80 0.35244104266166687 1.0
80 0.3148314654827118 1.0
80 0.3376845419406891 1.0
80 0.3315282464027405 1.0
80 0.3450225591659546 1.0
80 0.3139556646347046 1.0
80 0.34932857751846313 1.0
80 0.3512738049030304 1.0
80 0.3258627951145172 1.0
80 0.3197799324989319 1.0
80 0.358166366815567 0.8888888888888888
80 0.3716268837451935 1.0
80 0.31426626443862915 1.0
80 0.32130196690559387 1.0
80 0.3207002282142639 1.0
80 0.3891155421733856 1.0
80 0.35045987367630005 1.0
80 0.32332736253738403 1.0
80 0.31951677799224854 1.0
80 0.3184094727039337 1.0
80 0.3341224491596222 1.0
80 0.3408585786819458 1.0
80 0.3139263093471527 1.0
80 0.33058592677116394 1.0
80 0.3134475648403168 1.0
80 0.3281571567058563 1.0
80 0.33370518684387207 1.0
80 0.33172252774238586 1.0
80 0.32849007844924927 1.0
80 0.3604048788547516 1.0
80 0.3651810884475708 1.0

测试模型

准备数据

# 准备数据
x,fat=next(iter(loader))
x,fat
(tensor([[0.6733, 0.4044],[0.6503, 0.0303],[0.9353, 0.9518],[0.4145, 0.6948],[0.9560, 0.8009],[0.6331, 0.0852],[0.5510, 0.8283],[0.1402, 0.2726],[0.3257, 0.8351]]),tensor([1, 1, 0, 0, 1, 1, 0, 0, 0]))

加载模型预测

# 加载模型
modell=torch.load("4.model")
# 使用模型
out=modell(x)
out
tensor([[1.5850e-04, 9.9984e-01],[1.4121e-06, 1.0000e+00],[7.1068e-01, 2.8932e-01],[9.9994e-01, 5.5789e-05],[4.1401e-03, 9.9586e-01],[3.3441e-06, 1.0000e+00],[9.9995e-01, 4.7039e-05],[9.9111e-01, 8.8864e-03],[1.0000e+00, 1.5224e-06]], grad_fn=<SoftmaxBackward>)
out.argmax(dim=1)
tensor([1, 1, 0, 0, 1, 1, 0, 0, 0])

对比结果

fat
tensor([1, 1, 0, 0, 1, 1, 0, 0, 0])
查看上面out的结果和fat的结论一致,不错
http://www.wangmingla.cn/news/51526.html

相关文章:

  • 山东建设监理协会网站无法登录seo专员招聘
  • 如皋网站设计南昌seo优化公司
  • 网站做流量是怎么回事关键词优化的最佳方法
  • 选择合肥网站建设手机网页链接制作
  • 东莞网站设计建设创建网站花钱吗
  • 个人名下公司查询网seo综合查询平台官网
  • 用网站模板做新网站seo专员工作内容
  • 做空视频文件的网站淄博网站营销与推广
  • 宝安做网站怎么样厦门seo厦门起梦
  • 网站空间有什么用视频运营管理平台
  • 涉县网站开发站长工具ip查询
  • 广州网站推广策划百度指数app下载
  • 保定网站开发公司百度域名注册官网
  • 做网站适合用什么字体上海百度推广排名
  • 天津公司网站怎样制作来客seo
  • 专做英文类网站自己建网站怎样建
  • 开公司 专做网站互联网推广运营是做什么的
  • 深圳做网站建设比较好的公司网站seo服务公司
  • java做网站的软件磁力链接搜索引擎2021
  • 富民网站建设谷歌手机版下载安装
  • 宿迁专业三合一网站开发网络营销的重要性与意义
  • 口碑营销的优势鄂州seo
  • 做电器哪个网站好搜索引擎优化的实验结果分析
  • 做网站要学点什么下载百度网盘app
  • 贵阳手机网站制作seo软件工具
  • 做企业网站设计方案上海网络推广招聘
  • 苏州 手机网站腾讯企点注册
  • 什么网站需要公安备案抖音搜索优化
  • 哈尔滨疫情最新公布广州aso优化
  • 做网站学什么什么专业色盲