当前位置: 首页 > news >正文

广西中国建设银行网站首页万江专业网站快速排名

广西中国建设银行网站首页,万江专业网站快速排名,上海网站开发怎么做,企业网站的建设内容EDA(Exploratory Data Analysis)中文名称为探索性数据分析,是为了在特征工程或模型开发之前对数据有个基本的了解。数据类型通常分为两类:连续类型和离散类型,特征类型不同,我们探索的内容也不同。 1. 特征类型 1.1 连续型特征 …

EDA(Exploratory Data Analysis)中文名称为探索性数据分析,是为了在特征工程或模型开发之前对数据有个基本的了解。数据类型通常分为两类:连续类型和离散类型,特征类型不同,我们探索的内容也不同。

1. 特征类型

1.1 连续型特征

定义:取值为数值类型且数值之间的大小具有实际含义。例如:收入。对于连续型变量,需要进行EDA的内容包括:

  • 缺失值
  • 均值
  • 方差
  • 标准差
  • 最大值
  • 最小值
  • 中位数
  • 众数
  • 四分位数
  • 偏度
  • 最大取值类别对应的样本数

1.2 离散型特征

定义:不具有数学意义的特征。如:性别。对于离散型变量,需要进行EDA的内容包括:

  • 缺失值
  • 众数
  • 取值个数
  • 最大取值类别对应的样本数
  • 每个取值对应的样本数

2. EDA目的

​ 通过EDA,需要达到以下几个目的:

​ (1)可以有效发现变量类型、分布趋势、缺失值、异常值等。

​ (2)缺失值处理:(i)删除缺失值较多的列,通常缺失超过50%的列需要删除;(ii)缺失值填充。对于离散特征,通常将NAN单独作为一个类别;对于连续特征,通常使用均值、中值、0或机器学习算法进行填充。具体填充方法因业务的不同而不同。

​ (3)异常值处理(主要针对连续特征)。如:Winsorizer方法处理。

​ (4)类别合并(主要针对离散特征)。如果某个取值对应的样本个数太少,就需要将该取值与其他值合并。因为样本过少会使数据的稳定性变差,且不具有统计意义,可能导致结论错误。由于展示空间有限,通常选择取值个数最少或最多的多个取值进行展示。

​ (5)删除取值单一的列。

​ (6)删除最大类别取值数量占比超过阈值的列。

3.实验

3.1 统计变量类型、分布趋势、缺失值、异常值等

#!/usr/bin/pythonimport pandas as pd
import numpy as npdef getTopValues(series, top = 5, reverse = False):"""Get top/bottom n valuesArgs:series (Series): data seriestop (number): number of top/bottom n valuesreverse (bool): it will return bottom n values if True is givenReturns:Series: Series of top/bottom n values and percentage. ['value:percent', None]"""itype = 'top'counts = series.value_counts()counts = list(zip(counts.index, counts, counts.divide(series.size)))if reverse:counts.reverse()itype = 'bottom'template = "{0[0]}:{0[2]:.2%}"indexs = [itype + str(i + 1) for i in range(top)]values = [template.format(counts[i]) if i < len(counts) else None for i in range(top)]return pd.Series(values, index = indexs)def getDescribe(series, percentiles = [.25, .5, .75]):"""Get describe of seriesArgs:series (Series): data seriespercentiles: the percentiles to include in the outputReturns:Series: the describe of data include mean, std, min, max and percentiles"""d = series.describe(percentiles)return d.drop('count')def countBlank(series, blanks = []):"""Count number and percentage of blank values in seriesArgs:series (Series): data seriesblanks (list): list of blank valuesReturns:number: number of blanksstr: the percentage of blank values"""if len(blanks)>0:isnull = series.replace(blanks, None).isnull()else:isnull = series.isnull()n = isnull.sum()ratio = isnull.mean()return (n, "{0:.2%}".format(ratio))def isNumeric(series):"""Check if the series's type is numericArgs:series (Series): data seriesReturns:bool"""return series.dtype.kind in 'ifc'def detect(dataframe):""" Detect dataArgs:dataframe (DataFrame): data that will be detectedReturns:DataFrame: report of detecting"""numeric_rows = []category_rows = []for name, series in dataframe.items():# 缺失值比例nblank, pblank = countBlank(series)# 最大类别取值占比biggest_category_percentage = series.value_counts(normalize=True, dropna=False).values[0] * 100if isNumeric(series):desc = getDescribe(series,percentiles=[.01, .1, .5, .75, .9, .99])details = desc.tolist()details_index = ['mean', 'std', 'min', '1%', '10%', '50%', '75%', '90%', '99%', 'max']row = pd.Series(index=['type', 'size', 'missing', 'unique', 'biggest_category_percentage', 'skew'] + details_index,data=[series.dtype, series.size, pblank, series.nunique(), biggest_category_percentage, series.skew()] + details)row.name = namenumeric_rows.append(row)else:top5 = getTopValues(series)bottom5 = getTopValues(series, reverse=True)details = top5.tolist() + bottom5[::-1].tolist()details_index = ['top1', 'top2', 'top3', 'top4', 'top5', 'bottom5', 'bottom4', 'bottom3', 'bottom2', 'bottom1']row = pd.Series(index=['type', 'size', 'missing', 'unique', 'biggest_category_percentage'] + details_index,data=[series.dtype, series.size, pblank, series.nunique(), biggest_category_percentage] + details)row.name = namecategory_rows.append(row)return pd.DataFrame(numeric_rows), pd.DataFrame(category_rows)

demo(数据来自:https://www.kaggle.com/competitions/home-credit-default-risk/data)

import os
import eda
import pandas as pd
import numpy as npdata_dir = "./"df = pd.read_csv(os.path.join(data_dir, "bureau.csv"))
numeric_df, category_df = eda.detect(df)

在这里插入图片描述
在这里插入图片描述

3.2 缺失值处理(示例)

#连续特征
df[col].fillna(-df[col].mean(), inplace=True)
#离散特征
df[col].fillna('nan', inplace=True)

3.3 删除无用特征

def get_del_columns(df):del_columns = {}for index, row in df.iterrows():if row["unique"] < 2:del_columns[row["Feature"]] = "取值单一"continueif row["missing"] > 90:del_columns[row["Feature"]] = "缺失值数量大于90%"continueif row["biggest_category_percentage"] > 99:del_columns[row["Feature"]] = "取值最多的类别占比超过99%"continuedel_columns[row["Feature"]] = "正常"return del_columns

3.4 异常值处理

Winsorizer算法(定义某个变量的上界和下界,取值超过边界的话会用边界的值取代):
在这里插入图片描述

class Winsorizer():"""Performs Winsorization 1->1*Warning: this class should not be used directly."""    def __init__(self,trim_quantile=0.0):self.trim_quantile=trim_quantileself.winsor_lims=Nonedef train(self,X):# get winsor limitsself.winsor_lims=np.ones([2,X.shape[1]])*np.infself.winsor_lims[0,:]=-np.infif self.trim_quantile>0:for i_col in np.arange(X.shape[1]):lower=np.percentile(X[:,i_col],self.trim_quantile*100)upper=np.percentile(X[:,i_col],100-self.trim_quantile*100)self.winsor_lims[:,i_col]=[lower,upper]def trim(self,X):X_=X.copy()X_=np.where(X>self.winsor_lims[1,:],np.tile(self.winsor_lims[1,:],[X.shape[0],1]),np.where(X<self.winsor_lims[0,:],np.tile(self.winsor_lims[0,:],[X.shape[0],1]),X))return X_
winsorizer = Winsorizer (0.1)
a=np.random.random((10,2))
print("转化前: ", a)
winsorizer.train(a)
print("上界和下界: ", winsorizer.winsor_lims)
b = winsorizer.trim(a)
print("转化后: ", b)

在这里插入图片描述

4.总结

这篇文章只总结了EDA的常用做法,实际应用过程中还需要根据具体业务来做调整。

http://www.wangmingla.cn/news/81656.html

相关文章:

  • 淘宝做导航网站有哪些宁波受欢迎全网seo优化
  • 建立搜索引擎网站搜索引擎优化关键字
  • 网站开发岗位简介百度如何注册公司网站
  • 做影集的网站或软件深圳关键词
  • 中国站长工具百度seo优化排名客服电话
  • 西宁的网站建设公司百度首页优化
  • 房产门户网站模板外链代发平台
  • 用php做的网站实例怎么推广游戏叫别人玩
  • 黑龙江住房和城乡建设部网站徐州seo外包
  • 网站推广的宣传途径网络软文营销案例
  • 网站推广广告申请企业网站制作流程
  • 怎么做网盘搜索网站深圳seo排名
  • 网站怎么做任务赚钱软文广告经典案例300
  • 有自己网站做淘宝客赚钱百度站长提交网址
  • web前端怎么学seo公司推荐
  • 男女做爰免费网站网站服务器
  • 怎么做网站首页线上营销方案
  • 网站数据怎么做论文注释北京朝阳区疫情最新情况
  • vps网站压缩指数分布的分布函数
  • 长沙招聘网站制作电话营销
  • 开什么网站暴利南宁seo咨询
  • 手机上自己如何做网站seo关键词排名优化制作
  • 理财网站如何做推广方案整合营销传播名词解释
  • 建筑工程网价是什么意思seo描述是什么
  • 做网站服务销售网站营销外包哪家专业
  • 做网站页面的软件发稿平台
  • 免费的企业网页制作网站网络营销的概念和含义
  • wordpress 阅读数惠州搜索引擎优化
  • 深圳做网站外包公司河南做网站的公司
  • 广州专业网站制作设计推广普通话手抄报模板