当前位置: 首页 > news >正文

长春做网站哪家公司好关键字挖掘机爱站网

长春做网站哪家公司好,关键字挖掘机爱站网,微信网站这么做,wordpress注册文件丢字的本质 丢字的本质是在一段音频中一小段数据变为0 丢字对主观感受的影响 1. 丢字位置 丢字的位置对感知效果有很大影响。如果丢字发生在音频信号的静音部分或低能量部分,感知可能不明显;而如果丢字发生在高能量部分或关键音素上,感知…

丢字的本质

丢字的本质是在一段音频中一小段数据变为0

丢字对主观感受的影响

1. 丢字位置

丢字的位置对感知效果有很大影响。如果丢字发生在音频信号的静音部分或低能量部分,感知可能不明显;而如果丢字发生在高能量部分或关键音素上,感知会非常明显。

2. 丢字持续时间

虽然10ms的丢字时间相对较短,但如果丢字发生在关键音素或瞬态(如爆破音、元音等)上,感知会更加明显。

3. 音频内容

不同类型的音频内容对丢字的敏感度不同。例如,语音信号中的丢字可能比音乐信号中的丢字更容易被感知,因为语音信号中有更多的瞬态和关键音素。

4. 人耳的感知能力

人耳对不同频率和时间的变化有不同的敏感度。某些频率范围内的丢字可能更容易被感知,而其他频率范围内的丢字可能不明显。

丢字位置和丢字持续时间的影响

判断丢字的位置在高能量和低能量位置以及丢字时间对pesq分数的影响

选取一段音频,随机在其高能量和低能量位置丢字,丢字时间分别设置为

[0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1]

单位为s,生成所有丢字的音频,再对丢字音频进行pesq评分,画成折线图输出

脚本代码如下:

import numpy as np
from scipy.io import wavfile
from pesq import pesq
from pesq import PesqError
import librosa
import matplotlib.pyplot as pltdef create_single_drop_audio(data, drop_start, drop_duration, sample_rate):"""在音频信号中指定位置,并将该位置的一小段音频数据设置为零"""num_samples = len(data)drop_samples = int(drop_duration * sample_rate)drop_end = drop_start + drop_samplesprint(drop_start,drop_duration)# 创建丢字音频dropped_data = np.copy(data)dropped_data[drop_start:drop_end] = 0return dropped_data# 读取原始音频文件并转换采样率
original_file = 'audio_file.wav'
target_sample_rate = 16000  # 选择8000或16000# 使用librosa加载音频文件并转换采样率
original_data, original_sample_rate = librosa.load(original_file, sr=target_sample_rate)# 计算音频信号的能量分布
energy = np.abs(original_data)**2
window_size = int(0.01 * original_sample_rate)  # 10ms窗口
energy = np.convolve(energy, np.ones(window_size), 'same')# 随机选择一个低能量位置进行丢字
low_energy_indices = np.where(energy < np.percentile(energy, 20))[0]  # 选择能量最低的20%
high_energy_indices = np.where(energy > np.percentile(energy, 80))[0]  # 选择能量最高的20%# 定义不同的drop_duration值
drop_durations = [0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1]# 存储PESQ分数
pesq_scores_low_energy = []
pesq_scores_high_energy = []# 计算原始音频的PESQ分数(与自身比较)
try:original_pesq_score = pesq(original_sample_rate, original_data, original_data, 'wb')print(f'Original Audio PESQ Score: {original_pesq_score:.2f}')
except PesqError as e:print(f'Error calculating PESQ for original audio: {e}')original_pesq_score = None# 对低能量部分进行丢字
drop_start = np.random.choice(low_energy_indices)
for drop_duration in drop_durations:dropped_data = create_single_drop_audio(original_data, drop_start, drop_duration, sample_rate=original_sample_rate)# 保存丢字音频output_file = f'low_energy_dropped_audio_{int(drop_duration*1000)}ms.wav'wavfile.write(output_file, original_sample_rate, (dropped_data * 32767).astype(np.int16))try:pesq_score = pesq(original_sample_rate, original_data, dropped_data, 'wb')pesq_scores_low_energy.append(pesq_score)print(f'Low Energy - Drop Duration: {drop_duration:.3f}s, PESQ Score: {pesq_score:.2f}')except PesqError as e:print(f'Error calculating PESQ for drop_duration {drop_duration} in low energy: {e}')pesq_scores_low_energy.append(None)# 对高能量部分进行丢字
drop_start = np.random.choice(high_energy_indices)
for drop_duration in drop_durations:dropped_data = create_single_drop_audio(original_data, drop_start, drop_duration, sample_rate=original_sample_rate)# 保存丢字音频output_file = f'high_energy_dropped_audio_{int(drop_duration*1000)}ms.wav'wavfile.write(output_file, original_sample_rate, (dropped_data * 32767).astype(np.int16))try:pesq_score = pesq(original_sample_rate, original_data, dropped_data, 'wb')pesq_scores_high_energy.append(pesq_score)print(f'High Energy - Drop Duration: {drop_duration:.3f}s, PESQ Score: {pesq_score:.2f}')except PesqError as e:print(f'Error calculating PESQ for drop_duration {drop_duration} in high energy: {e}')pesq_scores_high_energy.append(None)# 绘制折线图
plt.figure(figsize=(12, 8))
plt.plot([0] + drop_durations, [original_pesq_score] + pesq_scores_low_energy, marker='o', linestyle='-', color='b', label='Low Energy PESQ Score')
plt.plot([0] + drop_durations, [original_pesq_score] + pesq_scores_high_energy, marker='o', linestyle='-', color='r', label='High Energy PESQ Score')
plt.xlabel('Drop Duration (s)')
plt.ylabel('PESQ Score')
plt.title('PESQ Score vs Drop Duration (Low Energy vs High Energy)')
plt.grid(True)
plt.legend()
plt.show()

运行三次,随机选择不同的高能量和低能量部分,生成的折线图

从图表上看,高能部分丢字,只要出现1ms的丢字,mos下降的就很明显,mos下降0.2,主观听感上,就有一个明显的感知“bo”了一声。

但是低能量部分,出现丢字后,有时候mos下降了,有时候没有下降,10ms以内的丢字,mos基本不会下降,但是主观听感上,即使mos下降到3.8,也没有明显的感知

结论

pesq这种评分方式不能很好的评价音频丢字给主观带来的影响

http://www.wangmingla.cn/news/116960.html

相关文章:

  • 网站建设做哪 个会计科目免费接单平台
  • 济南高端建站想做网络推广如何去做
  • 贵阳h5网站建设网站制作郑州
  • 网站什么时候备案好南宁网站推广大全
  • redis 在网站开发中怎么用百度关键词收录排名
  • c2c平台的特点seo sem是什么
  • 免费门户网站建设官方app下载安装
  • 网站建设制作设计营销 广州电商运营推广怎么做
  • 中国最大的网站seo报告
  • 做直播网站用什么程序互联网营销师怎么做
  • 石家庄做网站排名公司东莞推广
  • 现在用什么工具做网站好厦门seo关键词排名
  • 太原网站公司哪家好vivo应用商店
  • 岳阳公司网站开发网页搜索快捷键
  • 微信24小时网站建设巨量算数关键词查询
  • 西安企业网站建设广州网站建设公司
  • wordpress 后台 慢想做seo哪里有培训的
  • 大气企业网站源码php全国前十名小程序开发公司
  • 做正品的汽配网站优化大师是干什么的
  • 做标书的视频网站谷歌seo服务公司
  • 织梦广告网站模板免费下载网络营销策略的演变
  • 怎么查网站有没有做推广重庆网站seo诊断
  • wordpress 显示图片seo下载站
  • 外贸网站建设知识 列表济南网站建设
  • 可以自己做网站这么做seo页面链接优化
  • 基于web的毕业设计题目有哪些搜索优化seo
  • 台州网站推广网页设计制作网站素材
  • 简单的网站php开发教程上海网站seo排名优化
  • 网站后台一般是用什么做的网站专业术语中seo意思是
  • 网站开发 精品课程上海空气中检测出病毒