当前位置: 首页 > news >正文

荆州哪里做网站什么软件能搜索关键词能快速找到

荆州哪里做网站,什么软件能搜索关键词能快速找到,青村网站建设,网站没有关键词如是我闻: 在用IsaacLab 做强化学习实验时,回顾已训练好的模型需要调用workflow中的play.py脚本,以下是对rsl_rl的play.py脚本的逐行精读。 1. 版权声明和文件描述 # Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All ri…

如是我闻: 在用IsaacLab 做强化学习实验时,回顾已训练好的模型需要调用workflow中的play.py脚本,以下是对rsl_rlplay.py脚本的逐行精读。

1. 版权声明和文件描述

# Copyright (c) 2022-2024, The Isaac Lab Project Developers.
# All rights reserved.
#
# SPDX-License-Identifier: BSD-3-Clause"""Script to play a checkpoint if an RL agent from RSL-RL.""""""Launch Isaac Sim Simulator first."""

2. 导入模块

import argparse
from omni.isaac.lab.app import AppLauncher# local imports
import cli_args  # isort: skip
  • 功能
    • argparse:用于解析命令行参数,允许用户在运行脚本时指定一些选项。
    • AppLauncher:用于启动和管理 Isaac Sim 应用程序。
    • cli_args:本地导入模块,可能包含特定的命令行参数设置(如强化学习相关的参数)。

3. 命令行参数解析

# add argparse arguments
parser = argparse.ArgumentParser(description="Train an RL agent with RSL-RL.")
parser.add_argument("--cpu", action="store_true", default=False, help="Use CPU pipeline.")
parser.add_argument("--disable_fabric", action="store_true", default=False, help="Disable fabric and use USD I/O operations."
)
parser.add_argument("--num_envs", type=int, default=None, help="Number of environments to simulate.")
parser.add_argument("--task", type=str, default=None, help="Name of the task.")
parser.add_argument("--seed", type=int, default=None, help="Seed used for the environment")
# append RSL-RL cli arguments
cli_args.add_rsl_rl_args(parser)
# append AppLauncher cli args
AppLauncher.add_app_launcher_args(parser)
args_cli = parser.parse_args()
  • 功能
    • 这里设置了一些命令行参数,用户可以在运行时指定这些参数,如是否使用 CPU、模拟环境的数量、任务名称等。
    • 通过 cli_args.add_rsl_rl_args(parser)AppLauncher.add_app_launcher_args(parser) 添加了更多与 RSL-RL 和 AppLauncher 相关的参数。

4. 启动 Isaac Sim 应用

# launch omniverse app
app_launcher = AppLauncher(args_cli)
simulation_app = app_launcher.app
  • 功能
    • 通过 AppLauncher 类,根据解析的命令行参数启动 Isaac Sim 应用,并创建一个 simulation_app 实例用于管理模拟器。

5. 导入其他库

import gymnasium as gym
import os
import torchfrom rsl_rl.runners import OnPolicyRunnerimport omni.isaac.lab_tasks  # noqa: F401
from omni.isaac.lab_tasks.utils import get_checkpoint_path, parse_env_cfg
from omni.isaac.lab_tasks.utils.wrappers.rsl_rl import (RslRlOnPolicyRunnerCfg,RslRlVecEnvWrapper,export_policy_as_jit,export_policy_as_onnx,
)
  • 功能
    • gymnasium:强化学习的标准库,用于创建和管理环境。
    • torch:用于深度学习的库,主要用于处理神经网络模型。
    • OnPolicyRunner:来自 RSL-RL 的一个类,用于管理强化学习代理的训练和推理过程。
    • omni.isaac.lab_tasks:Isaac Sim 相关的模块,提供了环境配置、模型检查点加载和策略导出等功能。

6. 主函数定义

def main():"""Play with RSL-RL agent."""# parse configurationenv_cfg = parse_env_cfg(args_cli.task, use_gpu=not args_cli.cpu, num_envs=args_cli.num_envs, use_fabric=not args_cli.disable_fabric)agent_cfg: RslRlOnPolicyRunnerCfg = cli_args.parse_rsl_rl_cfg(args_cli.task, args_cli)
  • 功能

    • env_cfg(环境配置)

      • 用途env_cfg 是一个环境配置对象,包含了用于设置模拟环境的参数。这些参数可能包括:
      • 任务的名称(决定要执行哪个任务)。
      • 是否使用 GPU(决定是否使用 GPU 进行加速)。
      • 模拟环境的数量(决定要同时运行多少个环境)。
      • 是否启用或禁用某些特定功能(例如 fabric 或 USD I/O 操作)。
    • 总结env_cfg 是一个“设置包”,里面装着各种关于环境的设置,它告诉模拟器应该如何配置和运行你的任务。

    • agent_cfg(强化学习代理配置)

      • 用途agent_cfg 是一个强化学习代理的配置对象,包含了与强化学习算法和代理相关的参数。这些参数可能包括:
      • 强化学习模型的具体设置(例如网络架构、学习率等)。
      • 从哪个检查点加载训练好的模型。
      • 日志和保存路径等其他信息。
    • 总结agent_cfg 是另一个“设置包”,但它的重点是告诉强化学习代理应该如何行动、如何学习,以及从哪里开始。

总的来说

  • env_cfg 配置了“舞台”——也就是你的模拟环境。
  • agent_cfg 配置了“演员”——也就是你的强化学习代理,它决定了演员如何在舞台上表演。

7. 创建和包装环境

    # create isaac environmentenv = gym.make(args_cli.task, cfg=env_cfg)# wrap around environment for rsl-rlenv = RslRlVecEnvWrapper(env)
  • 功能
    • env_cfg 只是模拟环境,我们还需要创建并初始化一个强化学习环境 env,这个环境由 gym.make 创建,并使用 RSL-RL 的 RslRlVecEnvWrapper 进行封装,使其兼容 RSL-RL 的训练和推理流程。

8. 日志路径和模型加载

    # specify directory for logging experimentslog_root_path = os.path.join("logs", "rsl_rl", agent_cfg.experiment_name)log_root_path = os.path.abspath(log_root_path)print(f"[INFO] Loading experiment from directory: {log_root_path}")resume_path = get_checkpoint_path(log_root_path, agent_cfg.load_run, agent_cfg.load_checkpoint)print(f"[INFO]: Loading model checkpoint from: {resume_path}")
  • 功能
    • 设置日志记录的路径,并根据训练运行的名称和检查点的编号加载已保存的模型检查点。

9. 加载已训练的模型

    # load previously trained modelppo_runner = OnPolicyRunner(env, agent_cfg.to_dict(), log_dir=None, device=agent_cfg.device)ppo_runner.load(resume_path)print(f"[INFO]: Loading model checkpoint from: {resume_path}")
  • 功能
    • 使用 OnPolicyRunner 类加载之前训练好的强化学习模型,并恢复到之前的状态。

10. 获取推理策略并导出

    # obtain the trained policy for inferencepolicy = ppo_runner.get_inference_policy(device=env.unwrapped.device)# export policy to onnxexport_model_dir = os.path.join(os.path.dirname(resume_path), "exported")export_policy_as_jit(ppo_runner.alg.actor_critic, ppo_runner.obs_normalizer, path=export_model_dir, filename="policy.pt")export_policy_as_onnx(ppo_runner.alg.actor_critic, path=export_model_dir, filename="policy.onnx")
  • 功能
    • 获取用于推理的策略,并将其导出为 JIT 和 ONNX 格式,以便后续使用。

11. 环境模拟循环

    # reset environmentobs, _ = env.get_observations()# simulate environmentwhile simulation_app.is_running():# run everything in inference modewith torch.inference_mode():# agent steppingactions = policy(obs)# env steppingobs, _, _, _ = env.step(actions)
  • 功能
    • 重置环境,获取初始观测值,然后在模拟器运行期间,不断通过加载的策略生成动作,并用这些动作推进环境状态。

12. 关闭模拟器和环境

    # close the simulatorenv.close()
  • 功能
    • 在模拟结束时关闭环境,释放资源。

13. 入口函数

if __name__ == "__main__":# run the main functionmain()# close sim appsimulation_app.close()
  • 功能
    • 这个部分确保当脚本作为主程序运行时,main() 函数被执行,并在结束时关闭模拟器应用。

那我估计我也就是拿这个脚本来改动了,行。

非常的有品

以上

http://www.wangmingla.cn/news/140868.html

相关文章:

  • 怎么做浏览网站的小程序站外推广方式有哪些
  • 机械设备企业网站源码营销模式
  • 东莞网站推广渠道有哪些百度游戏排行榜
  • 百合网网站建设与策划seo网站推广教程
  • 直接做那个视频网站学校教育培训机构
  • 吉林政府网站建设aso优化服务平台
  • 网站建设有名的公司seo推广教程视频
  • 咋做抽奖网站最成功的网络营销案例
  • wordpress cmb2上海关键词优化方法
  • 公司为什么建立网站石家庄百度快照优化
  • 美国一级a做爰片免费网站推动防控措施持续优化
  • 网站开发前端库app开发平台
  • 服务型网站有哪些网络推广外包业务怎么样
  • 长春快速建站天天seo伪原创工具
  • 网站都有什么费用谷歌搜索引擎网页版入口
  • 美国挑衅中国最新消息优化设计三年级上册答案
  • 网站建设 模板广告策划方案范文
  • 网站做非经营性广告需备案满足seo需求的网站
  • 内江网站制作源码之家
  • 网站怎么换主机爬虫搜索引擎
  • dw可以做动态网站么推广普通话黑板报
  • 泰安网站制作百度一下首页问问
  • 手机怎么创网站磁力搜索神器
  • 做dj网站能赚钱吗郑州网站建设优化
  • 外贸没有公司 如何做企业网站?能翻到国外的浏览器
  • 自己做网站需要什么谷歌seo推广招聘
  • 网站建设要用多少种字体今天国内新闻10条
  • wordpress浮窗播放器企业官网seo
  • 南宁庄关键词推广优化方案搜索引擎优化排名技巧
  • 旅游网站总结莆田百度seo公司