当前位置: 首页 > news >正文

a站是哪个app宁波seo外包优化

a站是哪个app,宁波seo外包优化,做网站的前途怎么样,精美企业模板我们可以把语言模型分为两类: 自动回归式语言模型:自动回归式语言模型在本质上是单向的,也就是说,它只沿着一个方向阅读句子。正向(从左到右)预测;反向(从右到左)预测。…

       我们可以把语言模型分为两类:

  • 自动回归式语言模型:自动回归式语言模型在本质上是单向的,也就是说,它只沿着一个方向阅读句子。正向(从左到右)预测;反向(从右到左)预测。
  • 自动编码式语言模型:自动编码式语言模型同时利用了正向预测和反向预测的优势。在进行预测时,它会同时从两个方向阅读句子,所以自动编码式语言模型是双向的。

      本文将结合具体模型和论文,探讨这两种模型的损失函数。

一、自动编码式语言模型

       提到自动编码式语言模型,那最经典的非BERT莫属了。

1.1 BERT

       BERT(Bidirectional Encoder Representations from Transformers)是一种基于Transformer架构的自然语言处理模型。它由Google于2018年提出,以解决语境相关性和双向理解的问题。BERT采用双向训练方式,能够同时考虑文本左右两侧的上下文信息,有效捕获语境含义。

        BERT的损失函数由两部分组成,第一部分是来自 Mask-LM 的单词级别分类任务,另一部分是句子级别的分类任务。通过这两个任务的联合学习,可以使得 BERT 学习到的表征既有 token 级别信息,同时也包含了句子级别的语义信息。

       在第一部分的损失函数中,如果被 mask 的词集合为 M(即计算BERT的MLM loss时会忽略没被mask的token),因为它是一个词典大小 |V| 上的多分类问题,那么具体说来有:


L_1\left(\theta, \theta_1\right)=-\sum_{i=1}^M \log p\left(m=m_i \mid \theta, \theta_1\right), m_i \in[1,2, \ldots,|V|]

       在句子预测任务中,也是一个分类问题的损失函数:

L_2\left(\theta, \theta_2\right)=-\sum_{j=1}^N \log p\left(n=n_i \mid \theta, \theta_2\right), n_i \in[\text { IsNext, NotNext }]

        这两个损失函数也很容易理解:

  • 多分类问题,类别的数量等于词表的大小,第i个词被正确预测的概率越大,相应的损失越小
  • 二分类问题,第j个句子的类别被正确预测的概率越大,相应的损失越小

        因此,两个任务联合学习的损失函数是:

L\left(\theta, \theta_1, \theta_2\right)=-\sum_{i=1}^M \log p\left(m=m_i \mid \theta, \theta_1\right)-\sum_{j=1}^N \log p\left(n=n_i \mid \theta, \theta_2\right)

二、自动回归式语言模型

       BERT一度引领了NLP领域。但是随着OpenAI-GPT系列模型的爆火,自回归式模型被更为广泛的采用。本章详细解析GLM大模型、LoRA微调方法、Prefix tuning这三篇论文中的损失函数。以期找到这些损失函数的共性。

2.1 GLM系列大模型

       清华大学提出的GLM大模型预训练框架采用了自回归的空白填充方法,在自然语言理解、无条件生成、有条件生成等NLP任务上取得了显著成果。其中,GLM-130B是最大的模型,拥有1300亿参数,支持中英文双语,旨在训练出开源开放的高精度千亿中英双语语言模型。该模型采用了量化技术,可在4块3090(24G)或8块2080Ti(11G)上推理。

       输入向量为\mathbf{x}=\left[x_1, \cdots, x_n\right],抽样出文本段\left\{\boldsymbol{s}_1, \cdots, \boldsymbol{s}_m\right\},每个文本段s_{i}都代表了一系列连续的token吗,可以写做\left[s_{i, 1}, \cdots, s_{i, l_i}\right],每个文本段s_{i}都用[MASK]代表,从而形成了x_{corrupt}m表示抽样文本段的数量,l_{i}表示每个抽样文本段的长度。预训练目标可以用下式表示:

\max _\theta \mathbb{E}_{\boldsymbol{z} \sim Z_m}\left[\sum_{i=1}^m \log p_\theta\left(\boldsymbol{s}_{z_i} \mid \boldsymbol{x}_{\text {corrupt }}, \boldsymbol{s}_{\boldsymbol{z}_{<i}}\right)\right]

      需要对所有的抽样文本段进行随机打乱, Z_{m}\left\{\boldsymbol{s}_1, \cdots, \boldsymbol{s}_m\right\}被打乱后,所有可能性的集合,s_{z<i}又可以写作\left[\boldsymbol{s}_{z_1}, \cdots, \boldsymbol{s}_{z_{i-1}}\right]。在预测缺失的文本段s_{z_{i}}时(每个z_{i}都包含多个单词,所以需要用集合S表示,z_{i}作为下标),模型可以访问到被破坏的文本x_{corrupt},以及s_{z_{i}}前面所有的抽样文本段。

      那每个s_{z_{i}}中token的预测概率应该如何表示呢?如下:

\begin{aligned} & p_\theta\left(\boldsymbol{s}_i \mid \boldsymbol{x}_{\text {corrupt }}, \boldsymbol{s}_{\boldsymbol{z}_{<i}}\right) \\ = & \prod_{j=1}^{l_i} p\left(s_{i, j} \mid \boldsymbol{x}_{\text {corrupt }}, \boldsymbol{s}_{\boldsymbol{z}_{<i}}, \boldsymbol{s}_{i,<j}\right) \end{aligned}

     很简单,把所有token的概率乘起来就可以了。

     需要注意的是,这边要弄清楚s_{z_{i}}s_{i}的区别:

  • s_{i}代表第i个文本段
  • 由于\left\{\boldsymbol{s}_1, \cdots, \boldsymbol{s}_m\right\}有很多种打乱方式,s_{z_{i}}表示其中某一个打乱方式的第i个抽样文本段。

2.2 LoRA

       以上是针对GLM这系列特殊的模型。那么对于一般的自回归式模型,有没有更普遍的一种表达方式呢?我们以LoRA这篇文章为例。

       每一个下游任务都能用 内容-目标对来表示:\mathcal{Z}=\left\{\left(x_i, y_i\right)\right\}_{i=1, . ., N}x_{i}y_{i}都是token序列。例如在自然语言->sql语句任务中,x_{i}是自然语言查询,y_{i}是其相应的SQL命令。对于概括任务而言,x_{i}是文章的内容,y_{i}是其相应的概述内容。预训练的自回归语言模型可以用P_{\Phi}(y \mid x)来表示。那么微调就是要找到一组参数\phi,使得下式最大:

\max _{\Phi} \sum_{(x, y) \in \mathcal{Z}} \sum_{t=1}^{|y|} \log \left(P_{\Phi}\left(y_t \mid x, y_{<t}\right)\right)

       即用t前的所有样本来预测第t个样本。

三、参考文献

[1] Devlin J , Chang M W , Lee K ,et al.BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[J].  2018.

[2] Du Z , Qian Y , Liu X ,et al.GLM: General Language Model Pretraining with Autoregressive Blank Infilling[J].  2021.DOI:10.48550/arXiv.2103.10360.  

[3] Zeng, Aohan, et al. "Glm-130b: An open bilingual pre-trained model." arXiv preprint arXiv:2210.02414 (2022).

[4] Hu E J , Shen Y , Wallis P ,et al.LoRA: Low-Rank Adaptation of Large Language Models[J].  2021.DOI:10.48550/arXiv.2106.09685.  

http://www.wangmingla.cn/news/7264.html

相关文章:

  • 网站建设细节网络事件营销案例
  • 深圳建设局投标网站推广普通话宣传海报
  • 哪里有网站建设开发公司天津网络优化推广公司
  • 点子网站制作中国市场营销网
  • 建设网站需要的软件网络销售入门基本知识
  • 附近找装修公司排名怎么优化快
  • 网站分享模板南沙seo培训
  • 政府门户网站建设的实施方案百度推广怎么推
  • 网站制作需要哪些软件指数函数图像
  • 每个网站都有后台吗福州搜索排名提升
  • 吴镇宇做的电影教学网站关键词优化推广公司
  • 全flash网站制作服务营销的七个要素
  • 南京移动网站建设今天最新的新闻头条
  • 苏州网站建设要点如何快速网络推广
  • 淄博网站搭建公司查淘宝关键词排名软件
  • WordPress网盘下载插件seo外包是什么
  • 网站建设有什么优点近10天的时事新闻
  • 5站合一 网站建设百度竞价怎么操作
  • 锦州哪里做网站设计网站logo
  • PC网站开发的意义广东seo排名
  • 网站建设人才有哪些网络优化论文
  • 做网站咋做专门做排行榜的软件
  • c2c网站有哪些济南seo外包公司
  • 网站分辨率兼容怎么做上海牛巨微seo关键词优化
  • 网站备案 价格seo顾问多少钱
  • 个人电脑 网站 备案百度竞价员
  • 如何建立互联网公司网站怎么收录网站
  • 网站制作长沙seo软件服务
  • 吴江微信网站制作seo研究中心南宁线下
  • 广州做网站代理商怎么样进行网络推广