当前位置: 首页 > news >正文

想做一个网站怎么做免费网站推广网站破解版

想做一个网站怎么做,免费网站推广网站破解版,无锡网络公司哪家服务好,微信网站什么做文章目录 一、前言二、实验环境三、PyTorch数据结构1、Tensor(张量)1. 维度(Dimensions)2. 数据类型(Data Types)3. GPU加速(GPU Acceleration) 2、张量的数学运算1. 向量运算2. 矩阵…

文章目录

  • 一、前言
  • 二、实验环境
  • 三、PyTorch数据结构
    • 1、Tensor(张量)
      • 1. 维度(Dimensions)
      • 2. 数据类型(Data Types)
      • 3. GPU加速(GPU Acceleration)
    • 2、张量的数学运算
      • 1. 向量运算
      • 2. 矩阵运算
      • 3. 向量范数、矩阵范数、与谱半径详解
      • 4. 一维卷积运算
      • 5. 二维卷积运算
      • 6. 高维张量
        • torch.matmul VS torch.mul
        • 乘法计算原则
        • 二维卷积conv2d(四维张量)
        • 三维卷积conv3d(五维张量)

一、前言

  卷积运算是一种在信号处理、图像处理和神经网络等领域中广泛应用的数学运算。在图像处理和神经网络中,卷积运算可以用来提取特征、模糊图像、边缘检测等。在信号处理中,卷积运算可以用来实现滤波器等操作。

二、实验环境

  本系列实验使用如下环境

conda create -n DL python==3.11
conda activate DL
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia

三、PyTorch数据结构

1、Tensor(张量)

  Tensor(张量)是PyTorch中用于表示多维数据的主要数据结构,类似于多维数组,可以存储和操作数字数据。

1. 维度(Dimensions)

  Tensor(张量)的维度(Dimensions)是指张量的轴数或阶数。在PyTorch中,可以使用size()方法获取张量的维度信息,使用dim()方法获取张量的轴数。

在这里插入图片描述

2. 数据类型(Data Types)

  PyTorch中的张量可以具有不同的数据类型:

  • torch.float32或torch.float:32位浮点数张量。
  • torch.float64或torch.double:64位浮点数张量。
  • torch.float16或torch.half:16位浮点数张量。
  • torch.int8:8位整数张量。
  • torch.int16或torch.short:16位整数张量。
  • torch.int32或torch.int:32位整数张量。
  • torch.int64或torch.long:64位整数张量。
  • torch.bool:布尔张量,存储True或False。

【深度学习】Pytorch 系列教程(一):PyTorch数据结构:1、Tensor(张量)及其维度(Dimensions)、数据类型(Data Types)

3. GPU加速(GPU Acceleration)

【深度学习】Pytorch 系列教程(二):PyTorch数据结构:1、Tensor(张量): GPU加速(GPU Acceleration)

2、张量的数学运算

  PyTorch提供了丰富的操作函数,用于对Tensor进行各种操作,如数学运算、统计计算、张量变形、索引和切片等。这些操作函数能够高效地利用GPU进行并行计算,加速模型训练过程。

1. 向量运算

【深度学习】Pytorch 系列教程(三):PyTorch数据结构:2、张量的数学运算(1):向量运算(加减乘除、数乘、内积、外积、范数、广播机制)

2. 矩阵运算

【深度学习】Pytorch 系列教程(四):PyTorch数据结构:2、张量的数学运算(2):矩阵运算及其数学原理(基础运算、转置、行列式、迹、伴随矩阵、逆、特征值和特征向量)

3. 向量范数、矩阵范数、与谱半径详解

【深度学习】Pytorch 系列教程(五):PyTorch数据结构:2、张量的数学运算(3):向量范数(0、1、2、p、无穷)、矩阵范数(弗罗贝尼乌斯、列和、行和、谱范数、核范数)与谱半径详解

4. 一维卷积运算

【深度学习】Pytorch 系列教程(六):PyTorch数据结构:2、张量的数学运算(4):一维卷积及其数学原理(步长stride、零填充pad;宽卷积、窄卷积、等宽卷积;卷积运算与互相关运算)

5. 二维卷积运算

【深度学习】Pytorch 系列教程(七):PyTorch数据结构:2、张量的数学运算(5):二维卷积及其数学原理

6. 高维张量

torch.matmul VS torch.mul
  1. torch.matmul:用于执行两个张量的矩阵乘法操作,它要求两个张量的维度需要满足矩阵乘法的规则,例如对于两个三维张量,torch.matmul将在最后两个维度上执行矩阵乘法。
import torch# 创建两个张量
tensor1 = torch.randn(3, 4) 
tensor2 = torch.randn(4, 5)  # 矩阵乘法
result = torch.matmul(tensor1, tensor2) 
print(result.shape) 
  1. torch.mul:用于对两个张量进行逐元素相乘,即*运算符,会将两个张量的每个元素进行相乘。要求两个张量的形状需要一致或者满足广播规则。

  2. 对比

import torchtensor1 = torch.tensor([[1, 2, 3],[4, 5, 6]])  # shape: (2, 3)tensor2 = torch.tensor([[7, 8],[9, 10],[11, 12]])  # shape: (3, 2)# 使用 torch.matmul 进行矩阵乘法
result_matmul = torch.matmul(tensor1, tensor2)  # 结果为 shape (2, 2)
print("Matmul result:")
print(result_matmul)# 使用 torch.mul 进行逐元素相乘
result_mul = torch.mul(tensor1, tensor2.T)  # 结果为逐元素相乘后的张量
print("\nMul result:")
print(result_mul)

在这里插入图片描述

乘法计算原则
  1. 张量的维度匹配:两个张量进行乘法操作时,需要保证它们的维度匹配。例如,两个张量的维度分别为(a,b,c)和(c,d),那么它们可以进行乘法操作。

  2. 批量乘法:如果两个张量的维度不完全匹配,但它们在最后一维上相符,那么可以进行批量乘法。这意味着两个张量的前面维度需要匹配,并且其中一个张量的维度需要和另一个张量的倒数第二个维度相匹配。

import torchtensor1 = torch.randn(3, 4, 5)  # 维度为 (3, 4, 5)
tensor2 = torch.randn(3, 5, 6)  # 维度为 (3, 5, 6)
result = torch.matmul(tensor1, tensor2)print(result.size())  # 输出为 (3, 4, 6),说明两个张量进行了批量乘法
  1. 广播机制:如果两个张量的维度不完全匹配,但是可以通过广播机制进行维度的扩展以匹配,那么可以进行乘法操作。广播机制会自动将维度较小的张量扩展到维度较大的张量上。
import torchtensor1 = torch.tensor([[1, 2, 3],[4, 5, 6]])  # shape: (2, 3)tensor2 = torch.tensor([[7, 8],[9, 10],[11, 12]])  # shape: (3, 2)tensor3 = torch.cat([tensor1, tensor1], dim=1)# 通过 unsqueeze 添加新的维度来复制成三维张量
# tensor1_3d = tensor1.unsqueeze(0)  # 在第一个维度上添加新的维度
# print(tensor1_3d.shape)  # 输出:(1, 2, 3)
tensor1_3d = tensor1.expand(2, 2, 3)  # 扩展维度
print(tensor1_3d.shape)  # 输出:(2, 2, 3)
print(tensor1_3d)result_matmul1 = torch.matmul(tensor1, tensor2)
print(f"{tensor1.size()}*{tensor2.size()}={result_matmul1.size()}")
print(result_matmul1)result_matmul2 = torch.matmul(tensor1_3d, tensor2)
print(f"{tensor1_3d.size()}*{tensor2.size()}={result_matmul2.size()}")
print(result_matmul2)result_matmul3 = torch.matmul(tensor2, tensor1)
print(f"{tensor2.size()}*{tensor1.size()}={result_matmul3.size()}")
print(result_matmul3)result_matmul4 = torch.matmul(tensor2, tensor1_3d)
print(f"{tensor2.size()}*{tensor1_3d.size()}={result_matmul4.size()}")
print(result_matmul4)

在这里插入图片描述

二维卷积conv2d(四维张量)
import torch
import torch.nn.functional as F# batch_size=2, channel=3, height=32, width=32
input_tensor = torch.randn(2, 3, 32, 32)# out_channels=4, in_channels=3, kernel_height=3, kernel_width=3
conv_kernel = torch.randn(4, 3, 3, 3)# 执行卷积操作
output = F.conv2d(input_tensor, conv_kernel, padding=1)print(output.size())  # 输出为 (2, 4, 32, 32)
  • 通道匹配:卷积核的输入通道数必须与输入张量的通道数相同( 3 = 3 3=3 3=3),这样才能进行逐通道的卷积操作。

  • 大小匹配:卷积核的大小必须小于或等于输入张量的大小( 3 < 32 3<32 3<32),否则无法在输入张量上进行卷积操作。

  • 卷积参数

    • 步长:卷积时的步长参数需要考虑输入张量的大小;
    • 填充:填充参数可以用来控制卷积操作的输出尺寸,用于保持输入和输出的尺寸一致。
三维卷积conv3d(五维张量)
import torch
import torch.nn.functional as F#batch_size=2, channel=3, depth=10, height=32, width=32
input_tensor = torch.randn(2, 3, 10, 32, 32)# out_channels=4, in_channels=3, kernel_depth=3, kernel_height=3, kernel_width=3
conv_kernel = torch.randn(4, 3, 3, 3, 3)
# 执行三维卷积操作
output = F.conv3d(input_tensor, conv_kernel, padding=1)print(output.size())  # 输出为 (2, 4, 10, 32, 32)
http://www.wangmingla.cn/news/90871.html

相关文章:

  • 网站建设与管理自考试题及答案线上如何做推广
  • 怎么在网上找做网站的客户网络销售入门基本知识
  • 南山网站 建设深圳信科友情链接购买
  • 网站关键词制作郑州网站建设最便宜
  • 网站做信息流移动端关键词排名优化
  • 鞍山专业做网站公司百度搜索关键词推广
  • 支付宝支持12306网站建设站长查询
  • 网站备案准备资料seo外包是什么
  • 天津做网站.都找津坤科技做个公司网站大概多少钱
  • 汽车销售网站宁波seo快速优化课程
  • 怎么查看网站的安全性凤凰军事新闻最新消息
  • 免费做外贸的网站平台杭州网站推广与优化
  • 网站架构图的制作百度客服
  • 教育网站颜色制作公司网站的公司
  • 制作网站哪家好自己做网站
  • 中山市做网站公司厦门网站综合优化贵吗
  • 哪个网站教做ppt模板手机百度旧版本下载
  • 一般网站开发公司网站收录教程
  • 洪梅镇网站建设世界排名前十位
  • 网站建设优化项目企业软文营销发布平台
  • 湘潭网站建设优化建站北京网站优化价格
  • 国外做伞的品牌网站广告网址
  • ps做网站效果图网站排名优化师
  • 邢台做移动网站推广产品的软文怎么写
  • 关于网站开发的步骤免费crm客户管理系统
  • 镜像网站如何做排名查询网138网站域名
  • 嘉兴做网站的广州网站快速排名
  • 大理州建设局网站十大教育培训机构排名
  • 做网站建设网站制作企业推广平台有哪些
  • 微商城手机网站友情链接是啥意思