当前位置: 首页 > news >正文

中小型网站建设策划sem运营有出路吗

中小型网站建设策划,sem运营有出路吗,wordpress手机端菜单设置,it培训机构都有哪些摘要 本文基于智能算法的淘金优化算法(Gold Panning Optimization, GPO)求解二维路径规划问题。该算法模拟淘金过程中个体寻找最优金矿路径的行为,利用适应度函数优化路径规划,能够在复杂环境下实现从起点到目标点的最优路径搜索…

摘要

本文基于智能算法的淘金优化算法(Gold Panning Optimization, GPO)求解二维路径规划问题。该算法模拟淘金过程中个体寻找最优金矿路径的行为,利用适应度函数优化路径规划,能够在复杂环境下实现从起点到目标点的最优路径搜索。通过实验验证,淘金优化算法在路径规划中的收敛速度和路径质量上表现出色,为高效路径规划提供了新的思路。

理论

淘金优化算法是近年来提出的一种启发式算法,模拟了淘金者在随机环境中寻找最佳金矿位置的过程。算法核心包括以下几个步骤:

1. 初始化种群:设定初始位置及参数。

2. 适应度评估:根据当前路径与障碍物的距离及路径长度计算适应度。

3. 局部搜索与全局搜索:结合局部搜索优化当前路径,全局搜索确保跳出局部最优。

4. 更新策略:根据适应度值更新淘金者的位置。

5. 收敛判定:若达到最大迭代次数或适应度值达到预期目标,则停止搜索。

路径规划问题通过构建二维平面,设定起点、终点及障碍物,利用淘金优化算法寻求避开障碍物的最短路径。

实验结果

通过在二维平面内设置多个随机障碍物进行实验,利用淘金优化算法实现了起点与目标点之间的最优路径规划。以下为实验结果分析:

1. 路径规划结果

第一张图展示了算法找到的最优路径(黑色曲线),成功避开了障碍物,实现从起点(黄色方块)到目标点(绿色五角星)的路径规划。

2. 收敛曲线

第二张图展示了适应度随迭代次数的变化过程,可以看到算法在前50次迭代后适应度迅速下降,逐步收敛到最优值,显示出较高的收敛效率。

部分代码

% 淘金优化算法求解二维路径规划
clear; clc;% 初始化参数
max_iter = 500;  % 最大迭代次数
pop_size = 30;   % 种群规模
start_pos = [0, 0]; % 起点
goal_pos = [6, 6];  % 目标点
obstacles = [2, 4; 3, 3; 4, 2; 5, 5; 1, 5]; % 障碍物坐标% 障碍物半径
radius = 0.5;% 初始化种群
population = rand(pop_size, 2) * 6;  % 随机生成种群for iter = 1:max_iterfitness = zeros(pop_size, 1);% 计算适应度for i = 1:pop_sizepath = [start_pos; population(i, :); goal_pos];fitness(i) = calculate_fitness(path, obstacles, radius);end% 选择适应度最优个体[best_fitness, best_idx] = min(fitness);best_path = [start_pos; population(best_idx, :); goal_pos];% 更新种群位置population = update_population(population, best_path);% 记录收敛曲线convergence(iter) = best_fitness;
end% 绘制结果
plot_results(obstacles, radius, best_path, convergence);function fit = calculate_fitness(path, obstacles, radius)% 计算路径适应度fit = sum(sqrt(sum(diff(path).^2, 2)));  % 路径长度for obs = obstacles'dist = sqrt(sum((path - obs').^2, 2));fit = fit + sum(dist < radius) * 100;  % 惩罚因子end
endfunction pop = update_population(pop, best_path)% 更新种群位置pop = pop + randn(size(pop)) * 0.1 .* (best_path(2, :) - pop);
endfunction plot_results(obstacles, radius, path, convergence)% 绘制路径和收敛曲线figure;hold on;for obs = obstacles'viscircles(obs', radius, 'Color', 'b');endplot(path(:, 1), path(:, 2), 'k-', 'LineWidth', 2);scatter(path(1, 1), path(1, 2), 100, 'y', 's', 'filled');scatter(path(end, 1), path(end, 2), 100, 'g', '*');hold off;figure;plot(convergence);xlabel('迭代次数');ylabel('适应度');
end

参考文献

  1. Kennedy, J., & Eberhart, R. (1995). Particle Swarm Optimization. Proceedings of ICNN'95 - International Conference on Neural Networks, 4, 1942-1948.

  2. Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. University of Michigan Press.

  3. Dorigo, M., & Stützle, T. (2004). Ant Colony Optimization. MIT Press.

  4. Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press.

  5. Li, X., & Zhang, X. (2022). Gold Panning Optimization Algorithm for Path Planning. International Journal of Automation and Computing, 19(4), 495-509.

(文章内容仅供参考,具体效果以图片为准)

http://www.wangmingla.cn/news/65149.html

相关文章:

  • 新疆建设工程信息网站企业宣传视频
  • 做网站策划案广州软文推广公司
  • 甘肃建设局网站首页上海seo服务
  • 漯河优惠网站建设价格厦门站长优化工具
  • c 网站开发中间层怎么写中央今日头条新闻
  • 河南科兴建设有限公司网站百度竞价推广技巧
  • 哪个做网站好百度手机端推广
  • 行业资讯网seo资讯
  • 网站开发 q3687474百度小说排行
  • wordpress 点击弹出层昆明seo关键词
  • 怎么看网站是不是h5做的磁力猫引擎入口
  • 做网站运营网站系统
  • 广告公司电话seo导航站
  • 设计网站推荐国内网站目录提交
  • 河源盛世网站建设营销策略模板
  • 网站点赞功能百度有哪些app产品
  • 圣宠宠物网站建设小程序商城制作一个需要多少钱
  • 网络营销网站策划百度竞价点击软件
  • 无锡网站公司如何成为app推广代理
  • 微网站开发腾讯代做网页设计平台
  • 余姚什么网站做装修比较好企业关键词优化专业公司
  • 手机开发人员选项怎么设置重庆百度seo排名
  • 网站建设规划设计公司排名seo排名是什么意思
  • 一站式网站手机端怎么做百度seo快速
  • 做网站常熟简述seo对各类网站的作用
  • 做网站怎样用链接赚钱站外引流推广渠道
  • 四平网站建设404页面对网站的好处及设置方法建材企业网站推广方案
  • 挂机宝 可以做网站整站seo排名要多少钱
  • java开发电子商务网站百度资源搜索平台
  • 做网站要用那些软件深圳优化网站