当前位置: 首页 > news >正文

莲花网站建设注册网站怎么注册

莲花网站建设,注册网站怎么注册,做图的模板下载网站有哪些内容,全国疫情最新情报DenseNet,全称为Densely Connected Convolutional Networks,中文名为密集连接卷积网络,是由李沐等人在2017年提出的一种深度神经网络架构。 DenseNet旨在解决深度神经网络中的梯度消失问题和参数数量过多的问题,通过构建密集连接…

DenseNet,全称为Densely Connected Convolutional Networks,中文名为密集连接卷积网络,是由李沐等人在2017年提出的一种深度神经网络架构。 

DenseNet旨在解决深度神经网络中的梯度消失问题和参数数量过多的问题,通过构建密集连接的方式,使得网络能够更好地利用之前的特征,从而获得更好的性能。DenseNet的核心思想是:把网络中前面的层与后面的层进行连接,让前面的层的输出成为后面的层的输入。这样,整个卷积网络就变得非常紧凑,同时也避免了梯度消失的问题。

DenseNet的优点在于:参数少、计算速度快、准确率高。因此,DenseNet在图像识别、目标检测、图像分割等任务中都取得了很好的表现。

DenseNet是一种深度神经网络架构,它具有特殊的连接方式,可以有效地减少网络中的参数量,提高模型的准确性和稳定性。在图像分类任务中,DenseNet常常被使用。

在MATLAB中,可以使用深度学习工具箱来搭建和训练DenseNet模型。下面是一个简单的例子,展示如何使用深度学习工具箱来训练一个DenseNet模型进行CIFAR-10图像分类。

1. 准备数据

首先需要下载CIFAR-10数据集,可以使用MATLAB自带的数据集下载工具来获取数据集。

```MATLAB
cifar10Data = fullfile(tempdir, 'cifar-10-matlab');
if ~exist(cifar10Data, 'dir')
    cifar10Data = fullfile(toolboxdir('vision'), 'visiondata', 'cifar10');
    if ~exist(cifar10Data, 'dir')
        mkdir(cifar10Data);
        url = 'https://www.cs.toronto.edu/~kriz/cifar-10-matlab.tar.gz';
        helperCIFAR10Data.download(url, cifar10Data);
    end
end
```

2. 加载数据

使用 `imageDatastore` 函数将数据加载到MATLAB中。在此过程中,可以对图像进行增强处理,以提高模型的训练效果。

```MATLAB
% Load training and test data
[trainingImages, trainingLabels, testImages, testLabels] = helperCIFAR10Data.load(cifar10Data);

% Construct an imageDatastore object
trainingSet = imageDatastore(trainingImages, ...
    'labels', trainingLabels, ...
    'ReadFcn', @helperCIFAR10Data.readFunction);

testSet = imageDatastore(testImages, ...
    'labels', testLabels, ...
    'ReadFcn', @helperCIFAR10Data.readFunction);

% Prepare the data for training
inputSize = [32 32 3];
numClasses = 10;

% Apply data augmentation
augmentedTrainingSet = augmentedImageDatastore(inputSize, ...
    trainingSet, ...
    'ColorPreprocessing', 'gray2rgb', ...
    'RandCropSize', [28 28], ...
    'RandCropType', 'random', ...
    'RandRotation', [-8 8], ...
    'RandXReflection', true);
```

3. 构建DenseNet模型

使用 `densenet201` 函数从深度学习工具箱中加载DenseNet-201模型。

```MATLAB
net = densenet201;
```

可以使用 `analyzeNetwork` 函数来可视化模型架构。

```MATLAB
analyzeNetwork(net);
```

4. 训练模型

使用 `trainingOptions` 函数来配置训练选项。

```MATLAB
options = trainingOptions('sgdm', ...
    'InitialLearnRate', 0.001, ...
    'MaxEpochs', 50, ...
    'MiniBatchSize', 128, ...
    'VerboseFrequency', 50, ...
    'Plots', 'training-progress');
```

使用 `trainNetwork` 函数来训练模型。

```MATLAB
trainedNet = trainNetwork(augmentedTrainingSet, net, options);
```

5. 测试模型

使用 `classify` 函数来进行分类。

```MATLAB
predictedLabels = classify(trainedNet, testSet);
accuracy = mean(predictedLabels == testSet.Labels)
```

6. 可视化结果

使用 `montage` 函数来可视化测试集中的前20张图像及其分类结果。

```MATLAB
numImages = 20;
idx = randsample(numel(testSet.Files), numImages);
figure
montage(testSet.Files(idx), 'Size', [4 5]);
title('Test Images');

predictedLabels = classify(trainedNet, testSet);
label = cellstr(predictedLabels);
label = strcat(label, ", ", cellstr(num2str(testSet.Labels)));
groundTruth = cellstr(label);
groundTruth = strcat("Ground Truth: ", groundTruth);

predicted = cellstr(predictedLabels);
predicted = strcat("Prediction: ", predicted);

for i = 1:numImages
    text(i*32-25,32+10,groundTruth(idx(i)),'FontSize',8)
    text(i*32-25,32+20,predicted(idx(i)),'FontSize',8)
end
```

完整代码如下:

```MATLAB
cifar10Data = fullfile(tempdir, 'cifar-10-matlab');
if ~exist(cifar10Data, 'dir')
    cifar10Data = fullfile(toolboxdir('vision'), 'visiondata', 'cifar10');
    if ~exist(cifar10Data, 'dir')
        mkdir(cifar10Data);
        url = 'https://www.cs.toronto.edu/~kriz/cifar-10-matlab.tar.gz';
        helperCIFAR10Data.download(url, cifar10Data);
    end
end

[trainingImages, trainingLabels, testImages, testLabels] = helperCIFAR10Data.load(cifar10Data);

% Construct an imageDatastore object
trainingSet = imageDatastore(trainingImages, ...
    'labels', trainingLabels, ...
    'ReadFcn', @helperCIFAR10Data.readFunction);

testSet = imageDatastore(testImages, ...
    'labels', testLabels, ...
    'ReadFcn', @helperCIFAR10Data.readFunction);

% Prepare the data for training
inputSize = [32 32 3];
numClasses = 10;

% Apply data augmentation
augmentedTrainingSet = augmentedImageDatastore(inputSize, ...
    trainingSet, ...
    'ColorPreprocessing', 'gray2rgb', ...
    'RandCropSize', [28 28], ...
    'RandCropType', 'random', ...
    'RandRotation', [-8 8], ...
    'RandXReflection', true);

% Load pre-trained DenseNet-201 network
net = densenet201;

% Configure training options
options = trainingOptions('sgdm', ...
    'InitialLearnRate', 0.001, ...
    'MaxEpochs', 50, ...
    'MiniBatchSize', 128, ...
    'VerboseFrequency', 50, ...
    'Plots', 'training-progress');

% Train the network
trainedNet = trainNetwork(augmentedTrainingSet, net, options);

% Test the network
predictedLabels = classify(trainedNet, testSet);
accuracy = mean(predictedLabels == testSet.Labels)

% Visualize the results
numImages = 20;
idx = randsample(numel(testSet.Files), numImages);
figure
montage(testSet.Files(idx), 'Size', [4 5]);
title('Test Images');

predictedLabels = classify(trainedNet, testSet);
label = cellstr(predictedLabels);
label = strcat(label, ", ", cellstr(num2str(testSet.Labels)));
groundTruth = cellstr(label);
groundTruth = strcat("Ground Truth: ", groundTruth);

predicted = cellstr(predictedLabels);
predicted = strcat("Prediction: ", predicted);

for i = 1:numImages
    text(i*32-25,32+10,groundTruth(idx(i)),'FontSize',8)
    text(i*32-25,32+20,predicted(idx(i)),'FontSize',8)
end
```

http://www.wangmingla.cn/news/146556.html

相关文章:

  • 怎么在vps上做网站公司广告推广
  • wordpress自适应手机端网络营销seo是什么意思
  • 妇科医生咨询在线咨询免费网站关键词搜索排名优化
  • 推荐几个用vue做的网站百度联盟广告
  • 怎么建设网站赚钱网站优化效果
  • wordpress禁止右键插件seo专业优化公司
  • 网站模板颜色谷歌官方seo入门指南
  • 有什么网站是做批发的百度搜索
  • 最新深圳设计师建网站seo点击排名源码
  • 网站做SEO优化多少钱百度竞价是什么工作
  • 郑州做网站公司排新媒体销售好做吗
  • 做电子传单的网站营销推广策划方案
  • 花钱制作网站有什么好处域名查询备案
  • 阿里巴巴的网站是自己做的吗百度下载安装到桌面
  • 建设网站的成本有哪些百度热搜榜
  • 做网站的是外包公司吗网站设计公司模板
  • 虚拟主机可以做几个网站下载浏览器
  • 柳市建设网站营销型网页设计
  • 2022最新通道地址1江东怎样优化seo
  • 没有网站如何做cpa推广文件关键词搜索工具
  • 凤岗镇网站仿做青岛网站建设公司哪家好
  • 外贸行业建站最近一周新闻大事
  • 2022年网络规划设计师seo咨询推广找推推蛙
  • 桥南做网站南京seo网站优化推广
  • ps做的网站模板iis7站长工具
  • 个人电脑做服务器映射网站哈尔滨网站优化
  • 什么建设网站百家号排名
  • 网站服务器时间在哪里查询谷歌搜索引擎363入口
  • vps可以做多少网站百度网盘app手机版
  • 摄影网站源码 免费下载发广告去哪个平台