当前位置: 首页 > news >正文

怎样对一个网站做seo优化网站排名需要多少钱

怎样对一个网站做seo,优化网站排名需要多少钱,制作公司网页官网,网站建设与网页设计总结文章目录 题目303、区域和检索(数组不可变)304、二维区域和检索(矩阵不可变) 解①303,一维前缀和②304,二维前缀和 算法前缀和一维前缀和二维前缀和 题目 303、区域和检索(数组不可变&#xff…

文章目录

    • 题目
      • 303、区域和检索(数组不可变)
      • 304、二维区域和检索(矩阵不可变)
      • ①303,一维前缀和
      • ②304,二维前缀和
    • 算法
      • 前缀和
        • 一维前缀和
        • 二维前缀和

题目

303、区域和检索(数组不可变)

给定一个整数数组 nums,处理以下类型的多个查询:

  1. 计算索引 leftright (包含 leftright)之间的 nums 元素的 ,其中 left <= right

实现 NumArray 类:

  • NumArray(int[] nums) 使用数组 nums 初始化对象
  • int sumRange(int i, int j) 返回数组 nums 中索引 leftright 之间的元素的 总和 ,包含 leftright 两点(也就是 nums[left] + nums[left + 1] + ... + nums[right] )

示例 1:

输入:
["NumArray", "sumRange", "sumRange", "sumRange"]
[[[-2, 0, 3, -5, 2, -1]], [0, 2], [2, 5], [0, 5]]
输出:
[null, 1, -1, -3]解释:
NumArray numArray = new NumArray([-2, 0, 3, -5, 2, -1]);
numArray.sumRange(0, 2); // return 1 ((-2) + 0 + 3)
numArray.sumRange(2, 5); // return -1 (3 + (-5) + 2 + (-1)) 
numArray.sumRange(0, 5); // return -3 ((-2) + 0 + 3 + (-5) + 2 + (-1))

304、二维区域和检索(矩阵不可变)

给定一个二维矩阵 matrix,以下类型的多个请求:

  • 计算其子矩形范围内元素的总和,该子矩阵的 左上角(row1, col1)右下角(row2, col2)

实现 NumMatrix 类:

  • NumMatrix(int[][] matrix) 给定整数矩阵 matrix 进行初始化
  • int sumRegion(int row1, int col1, int row2, int col2) 返回 左上角 (row1, col1)右下角 (row2, col2) 所描述的子矩阵的元素 总和

示例 1:

在这里插入图片描述

输入: 
["NumMatrix","sumRegion","sumRegion","sumRegion"]
[[[[3,0,1,4,2],[5,6,3,2,1],[1,2,0,1,5],[4,1,0,1,7],[1,0,3,0,5]]],[2,1,4,3],[1,1,2,2],[1,2,2,4]]
输出: 
[null, 8, 11, 12]解释:
NumMatrix numMatrix = new NumMatrix([[3,0,1,4,2],[5,6,3,2,1],[1,2,0,1,5],[4,1,0,1,7],[1,0,3,0,5]]);
numMatrix.sumRegion(2, 1, 4, 3); // return 8 (红色矩形框的元素总和)
numMatrix.sumRegion(1, 1, 2, 2); // return 11 (绿色矩形框的元素总和)
numMatrix.sumRegion(1, 2, 2, 4); // return 12 (蓝色矩形框的元素总和)

①303,一维前缀和

class Solution {public int[] productExceptSelf(int[] nums) {int len=nums.length;int[] answer=new int[len];answer[0]=1;for(int i=1;i<len;i++){answer[i]=nums[i-1]*answer[i-1];}int R=nums[len-1]; // R存储右侧所有元素乘积for (int i = len - 2; i >= 0; i--) {answer[i] = answer[i] * R;R=R*nums[i];}return answer;}
}

②304,二维前缀和

class NumMatrix {int[][] sum;public NumMatrix(int[][] matrix) {int m=matrix.length,n=matrix[0].length;sum=new int[m+1][n+1];for(int i=1;i<=m;i++){for(int j=1;j<=n;j++){sum[i][j]=sum[i-1][j]+sum[i][j-1]-sum[i-1][j-1]+matrix[i-1][j-1];}}}public int sumRegion(int row1, int col1, int row2, int col2) {return sum[row2+1][col2+1]-sum[row1][col2+1]-sum[row2+1][col1]+sum[row1][col1];}
}

算法

前缀和

前缀和是一种常见的算法技巧,用于快速计算数组中某个区间内元素的和,通常用于优化处理大量的区间求和问题,比如给定一个数组,询问其中某个连续区间内元素的和。

算法原理: 前缀和的核心思想是通过对数组进行预处理,计算出从数组开头到每个位置的元素累加和,然后利用这些预先计算好的累加和,在O(1)时间内求出任意区间的和。假设给定数组为A,其前缀和数组为prefix,其中prefix[i]表示数组A从0到i的元素和。

一维前缀和

假设给定数组为A = [1, 2, 3, 4, 5],其前缀和数组为prefix = [1, 3, 6, 10, 15]。

但在①②中,A数组的前缀和应当为prefix = [0,1, 3, 6, 10, 15],比原数组要多一个。

在计算任意区间的和时,通过在前缀和数组中添加0,可以统一处理起始位置为0的边界情况,无需单独考虑。例如,对于查询区间[0, 3],直接使用prefix[3]即可得到结果,无需特殊处理。

具体使用的时候建议用草稿纸绘制相关的数组或者矩阵的图形,进行检验。

二维前缀和

二维的前缀和更为复杂,

A = [ [1, 2, 3], [4, 5, 6], [7, 8, 9] ]

prefix = [ [1, 3, 6], [5, 12, 21], [12, 27, 45] ]

prefix[i] [j] = A[i] [j] + prefix[i-1] [j] + prefix[i] [j-1] - prefix[i-1] [j-1]

可以用下图帮助理解(图源LeetCode:负雪明烛):

至于输出的公式,也类似于上面的用右下角位置加上左上角-1的位置减去区域右上角和左下角:

area=sum[row2+1] [col2+1]-sum[row1] [col2+1]-sum[row2+1] [col1]+sum[row1] [col1](为了方便书写代码,实际矩阵比原矩阵大一圈,所以这里所有的加减都在原矩阵基础上+1)

http://www.wangmingla.cn/news/57467.html

相关文章:

  • 网站建设的 关键词网络公关公司联系方式
  • 校园网站建设考评办法搜狗搜索引擎优化论文
  • 手机网站开发教程视频宁波正规seo快速排名公司
  • 做网站用的图片怎样压缩重庆网站seo推广公司
  • 简历模板文档企业网站优化服务
  • 做aa视频网站seo是什么意思为什么要做seo
  • 天津市住房与城乡建设部网站seo高手是怎样炼成的
  • 网站后台是什么百度竞价代运营外包
  • 天津做网站.都找津坤科技热狗seo外包
  • wordpress 在线安装北京seo排名方法
  • 个人网站备案怎么样才能简单的过seo外链在线提交工具
  • 用照片做的ppt模板下载网站好百度网址ip
  • 太原网站建设地图市场调研报告word模板
  • 税务局网站怎么做财务报表廊坊关键词优化排名
  • 网站建设vr上海培训机构有哪些
  • 1688网站简介百度浏览器下载官方免费
  • 深圳免费网站制作哪个好站长工具精华
  • 库存网站建设定制百度打车客服电话
  • 做响应式网站的河南网站seo费用
  • 摩托车专业网站百度投放广告联系谁
  • ui培训机构哪家好天津百度网站排名优化
  • 网站托管seo优化在哪里学
  • ubuntu本地安装wordpress北京搜索优化推广公司
  • 查询网站建设时间营销到底是干嘛的
  • 用php做电子商务网站搜索引擎技术优化
  • 哪个网站有适合小学生做的题目银川seo
  • 黄冈网站建设报价表衡水seo优化
  • 网销都是在那些网站做推广如何联系百度客服
  • dw做的网站有域名么锦绣大地seo官网
  • 杭州 网站建设公司网站制作流程和方法