当前位置: 首页 > news >正文

做问卷用哪个网站seo快速排名关键词

做问卷用哪个网站,seo快速排名关键词,江门住房和城乡建设部网站,专业网站网站设计1. 深度Q网络(DQN)回顾 DQN通过神经网络近似状态-动作值函数(Q函数),在训练过程中使用经验回放(Experience Replay)和固定目标网络(Fixed Target Network)来稳定训练过程…

1. 深度Q网络(DQN)回顾

DQN通过神经网络近似状态-动作值函数(Q函数),在训练过程中使用经验回放(Experience Replay)和固定目标网络(Fixed Target Network)来稳定训练过程。DQN的更新公式为:

Q(s, a) \leftarrow Q(s, a) + \alpha [r + \gamma \max_{a'} Q(s', a') - Q(s, a)]

2. Double DQN算法

原理

DQN存在一个问题,即在更新Q值时,使用同一个Q网络选择和评估动作,容易导致过高估计(overestimation)问题。Double DQN(Double Deep Q-Network, DDQN)通过引入两个Q网络,分别用于选择动作和评估动作,来缓解这一问题。

公式推导

Double DQN的更新公式为:

Q(s, a) \leftarrow Q(s, a) + \alpha [r + \gamma Q(s', \arg\max_{a'} Q(s', a'; \theta); \theta^- ) - Q(s, a)]

其中:

  • \theta 是当前Q网络的参数。
  • \theta^{-} 是目标Q网络的参数。
代码实现

我们以经典的OpenAI Gym中的CartPole环境为例,展示Double DQN算法的实现。

import gym
import numpy as np
import tensorflow as tf
from tensorflow.keras import models, layers, optimizersclass DoubleDQNAgent:def __init__(self, state_size, action_size):self.state_size = state_sizeself.action_size = action_sizeself.memory = []self.gamma = 0.95self.epsilon = 1.0self.epsilon_decay = 0.995self.epsilon_min = 0.01self.learning_rate = 0.001self.model = self._build_model()self.target_model = self._build_model()self.update_target_model()def _build_model(self):model = models.Sequential()model.add(layers.Dense(24, input_dim=self.state_size, activation='relu'))model.add(layers.Dense(24, activation='relu'))model.add(layers.Dense(self.action_size, activation='linear'))model.compile(loss='mse', optimizer=optimizers.Adam(learning_rate=self.learning_rate))return modeldef update_target_model(self):self.target_model.set_weights(self.model.get_weights())def remember(self, state, action, reward, next_state, done):self.memory.append((state, action, reward, next_state, done))def act(self, state):if np.random.rand() <= self.epsilon:return np.random.choice(self.action_size)q_values = self.model.predict(state)return np.argmax(q_values[0])def replay(self, batch_size):minibatch = np.random.choice(self.memory, batch_size)for state, action, reward, next_state, done in minibatch:target = self.model.predict(state)if done:target[0][action] = rewardelse:t = self.model.predict(next_state)t_ = self.target_model.predict(next_state)target[0][action] = reward + self.gamma * t_[0][np.argmax(t[0])]self.model.fit(state, target, epochs=1, verbose=0)if self.epsilon > self.epsilon_min:self.epsilon *= self.epsilon_decayenv = gym.make('CartPole-v1')
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
agent = DoubleDQNAgent(state_size, action_size)
episodes = 1000for e in range(episodes):state = env.reset()state = np.reshape(state, [1, state_size])done = Falsetime = 0while not done:action = agent.act(state)next_state, reward, done, _ = env.step(action)next_state = np.reshape(next_state, [1, state_size])reward = reward if not done else -10agent.remember(state, action, reward, next_state, done)state = next_statetime += 1if done:agent.update_target_model()print(f"Episode: {e}/{episodes}, Score: {time}, Epsilon: {agent.epsilon:.2}")if len(agent.memory) > 32:agent.replay(32)env.close()
print("Double DQN训练完成")

3. Dueling DQN算法

原理

Dueling DQN通过将Q值函数拆分为状态价值(Value)和优势函数(Advantage),分别估计某一状态下所有动作的价值和某一动作相对于其他动作的优势。这样可以更好地评估状态的价值,从而提高算法性能。

公式推导

Dueling DQN的Q值函数定义为:

Q(s, a; \theta, \alpha, \beta) = V(s; \theta, \beta) + (A(s, a; \theta, \alpha) - \frac{1}{|\mathcal{A}|} \sum_{a'} A(s, a'; \theta, \alpha)) 

其中:

  • V(s; \theta, \beta)是状态价值函数。
  • A(s, a; \theta, \alpha)是优势函数。
代码实现

以CartPole环境为例,展示Dueling DQN算法的实现。

import gym
import numpy as np
import tensorflow as tf
from tensorflow.keras import models, layers, optimizersclass DuelingDQNAgent:def __init__(self, state_size, action_size):self.state_size = state_sizeself.action_size = action_sizeself.memory = []self.gamma = 0.95self.epsilon = 1.0self.epsilon_decay = 0.995self.epsilon_min = 0.01self.learning_rate = 0.001self.model = self._build_model()self.target_model = self._build_model()self.update_target_model()def _build_model(self):input = layers.Input(shape=(self.state_size,))dense1 = layers.Dense(24, activation='relu')(input)dense2 = layers.Dense(24, activation='relu')(dense1)value_fc = layers.Dense(24, activation='relu')(dense2)value = layers.Dense(1, activation='linear')(value_fc)advantage_fc = layers.Dense(24, activation='relu')(dense2)advantage = layers.Dense(self.action_size, activation='linear')(advantage_fc)q_values = layers.Lambda(lambda x: x[0] + (x[1] - tf.reduce_mean(x[1], axis=1, keepdims=True)))([value, advantage])model = models.Model(inputs=input, outputs=q_values)model.compile(loss='mse', optimizer=optimizers.Adam(learning_rate=self.learning_rate))return modeldef update_target_model(self):self.target_model.set_weights(self.model.get_weights())def remember(self, state, action, reward, next_state, done):self.memory.append((state, action, reward, next_state, done))def act(self, state):if np.random.rand() <= self.epsilon:return np.random.choice(self.action_size)q_values = self.model.predict(state)return np.argmax(q_values[0])def replay(self, batch_size):minibatch = np.random.choice(self.memory, batch_size)for state, action, reward, next_state, done in minibatch:target = self.model.predict(state)if done:target[0][action] = rewardelse:t = self.target_model.predict(next_state)target[0][action] = reward + self.gamma * np.amax(t[0])self.model.fit(state, target, epochs=1, verbose=0)if self.epsilon > self.epsilon_min:self.epsilon *= self.epsilon_decayenv = gym.make('CartPole-v1')
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
agent = DuelingDQNAgent(state_size, action_size)episodes = 1000for e in range(episodes):state = env.reset()state = np.reshape(state, [1, state_size])done = Falsetime = 0while not done:action = agent.act(state)next_state, reward, done, _ = env.step(action)next_state = np.reshape(next_state, [1, state_size])reward = reward if not done else -10agent.remember(state, action, reward, next_state, done)state = next_statetime += 1if done:agent.update_target_model()print(f"Episode: {e}/{episodes}, Score: {time}, Epsilon: {agent.epsilon:.2}")if len(agent.memory) > 32:agent.replay(32)env.close()
print("Dueling DQN训练完成")

4. 优先经验回放DQN(PER DQN)

原理

优先经验回放(Prioritized Experience Replay, PER)通过赋予不同经验样本不同的优先级来增强经验回放机制。优先级高的样本更有可能被再次抽取,从而加速学习过程。

公式推导

优先经验回放基于TD误差计算优先级,定义为:

p_i = | \delta_i | + \epsilon

其中:

  • \delta_i 是TD误差。
  • \epsilon 是一个小的正数,防止优先级为零。

然后根据优先级分布概率来采样,使用重要性采样权重来修正梯度更新,定义为:

w_i = \left( \frac{1}{N} \cdot \frac{1}{P(i)} \right)^\beta

代码实现

以CartPole环境为例,展示PER DQN算法的实现。

import gym
import numpy as np
import tensorflow as tf
from tensorflow.keras import models, layers, optimizers
import random
import collectionsclass PERDQNAgent:def __init__(self, state_size, action_size):self.state_size = state_sizeself.action_size = action_sizeself.memory = collections.deque(maxlen=2000)self.gamma = 0.95self.epsilon = 1.0self.epsilon_decay = 0.995self.epsilon_min = 0.01self.learning_rate = 0.001self.model = self._build_model()self.target_model = self._build_model()self.update_target_model()self.priority = []self.alpha = 0.6self.beta = 0.4self.beta_increment_per_sampling = 0.001def _build_model(self):model = models.Sequential()model.add(layers.Dense(24, input_dim=self.state_size, activation='relu'))model.add(layers.Dense(24, activation='relu'))model.add(layers.Dense(self.action_size, activation='linear'))model.compile(loss='mse', optimizer=optimizers.Adam(learning_rate=self.learning_rate))return modeldef update_target_model(self):self.target_model.set_weights(self.model.get_weights())def remember(self, state, action, reward, next_state, done):self.memory.append((state, action, reward, next_state, done))self.priority.append(max(self.priority, default=1))def act(self, state):if np.random.rand() <= self.epsilon:return np.random.choice(self.action_size)q_values = self.model.predict(state)return np.argmax(q_values[0])def replay(self, batch_size):if len(self.memory) < batch_size:returnpriorities = np.array(self.priority)sampling_probabilities = priorities ** self.alphasampling_probabilities /= sampling_probabilities.sum()indices = np.random.choice(len(self.memory), batch_size, p=sampling_probabilities)minibatch = [self.memory[i] for i in indices]importance_sampling_weights = (len(self.memory) * sampling_probabilities[indices]) ** (-self.beta)importance_sampling_weights /= importance_sampling_weights.max()for i, (state, action, reward, next_state, done) in enumerate(minibatch):target = self.model.predict(state)if done:target[0][action] = rewardelse:t = self.target_model.predict(next_state)target[0][action] = reward + self.gamma * np.amax(t[0])self.model.fit(state, target, epochs=1, verbose=0, sample_weight=importance_sampling_weights[i])self.priority[indices[i]] = abs(target[0][action] - self.model.predict(state)[0][action]) + 1e-6if self.epsilon > self.epsilon_min:self.epsilon *= self.epsilon_decayself.beta = min(1.0, self.beta + self.beta_increment_per_sampling)env = gym.make('CartPole-v1')
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
agent = PERDQNAgent(state_size, action_size)
episodes = 1000for e in range(episodes):state = env.reset()state = np.reshape(state, [1, state_size])done = Falsetime = 0while not done:action = agent.act(state)next_state, reward, done, _ = env.step(action)next_state = np.reshape(next_state, [1, state_size])reward = reward if not done else -10agent.remember(state, action, reward, next_state, done)state = next_statetime += 1if done:agent.update_target_model()print(f"Episode: {e}/{episodes}, Score: {time}, Epsilon: {agent.epsilon:.2}")if len(agent.memory) > 32:agent.replay(32)env.close()
print("PER DQN训练完成")

5. 总结

Double DQN、Dueling DQN和优先经验回放DQN(PER DQN)都是对原始DQN的改进,各有其优点和适用场景。Double DQN通过减少过高估计提高了算法的稳定性;Dueling DQN通过分离状态价值和优势函数更好地评估状态;PER DQN通过优先采样重要经验加速了学习过程。这些改进算法在不同的应用场景下,可以选择合适的算法来提升强化学习的效果。

http://www.wangmingla.cn/news/121375.html

相关文章:

  • 政府网站建设 领导重视推广产品的方式有哪些
  • WordPress主题中文主题seo外包靠谱
  • 能够沟通业务的网站北京正规seo搜索引擎优化价格
  • 如何做好网站建设内容的策划书青岛百度推广多少钱
  • 注册城乡规划师考试大纲东莞seo托管
  • 苏州制作网页方案广州seo技术外包公司
  • 平台网站很难做百度一下官方入口
  • 做网站需要注册公司建网站找哪个公司
  • 学会了dw就可以做网站吗8个公开大数据网站
  • 各行各业网站建设独立西安seo诊断
  • 做美直播网站网络营销的8个基本职能
  • 深圳龙华网站公司优秀软文范例100字
  • 企业酒店的网站建设成都私人网站建设
  • 邢台物流网站建设百度一下你就知道主页
  • wordpress 域名映射网站优化seo培
  • .net 接单网站郑州网站网页设计
  • 上海网站建设公司网站建设广州做网站的公司哪家好
  • web制作网站竞价交易
  • 企业微信网站怎么做一级造价工程师
  • 2016网站建设报价表免费网站安全软件大全游戏
  • 潍坊网站建设优化排名百度资源分享网页
  • 广州分享网站建设2022百度seo优化工具
  • 政府网站集群建设方案seo规范培训
  • seo云优化下载点击宝seo
  • 做网站的服务器哪个系统好怎么把网站排名优化
  • 担路做网站谷歌推广怎么样
  • 网络营销课程大概学什么内容墨子学院seo
  • 遵义县住房和城乡建设局网站seo任务平台
  • wordpress 搜索框样式手机关键词seo排名优化
  • 学而思的网站哪里做的在哪里找软件开发公司